Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765569

RESUMO

As a commonly used liner material for fully reinforced, carbon-fiber-composite hydrogen storage cylinders, polyamide 6 (PA6) needs to meet the required hydrogen permeation index during use; otherwise, it may adversely affect the safe use of hydrogen storage cylinders. The hydrogen permeability of PA6 under different temperatures and pressures was tested, and the variations in its hydrogen permeability were investigated. Additionally, the hydrogen permeability of PA6, polyamide 11 (PA11), and high-density polyethylene (HDPE) at a temperature of 288 K and a pressure of 70 MPa was tested, and the differences in hydrogen permeability among these commonly used liner materials for type IV on-board hydrogen storage cylinders were studied. The results reported herein indicate that both the hydrogen permeability and diffusion coefficient of PA6 increase with rising test temperature but decrease with increasing pressure. The solubility coefficient of PA6 shows no significant change with varying test temperatures and pressures. At a test temperature of 288 K and a pressure of 70 MPa, among the three materials, PA6 has slightly stronger hydrogen permeation resistance than PA11, while HDPE has the least resistance. These research findings can serve as valuable reference data for evaluating the hydrogen permeability of liner materials.

2.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570071

RESUMO

Type IV hydrogen storage cylinders comprise a polymer liner and offer advantages such as lightweight construction, high hydrogen storage density, and good fatigue performance. However, they are also characterized by higher hydrogen permeability. Consequently, it is crucial for the polymer liner material to exhibit excellent resistance to hydrogen permeation. International organizations have established relevant standards mandating hydrogen permeation tests for the liner material of type IV on-board hydrogen storage cylinders. This paper provides a comprehensive review of existing research on hydrogen permeability and the hydrogen permeation test methods for the polymer liner material of type IV on-board hydrogen storage cylinders. By delving into the hydrogen permeation mechanism, a better understanding can be gained, offering valuable references for subsequent researchers in this field. This paper starts by thoroughly discussing the hydrogen permeation mechanism of the liner material. It then proceeds to compare and analyze the hydrogen permeation test methods specified by various standards. These comparisons encompass sample preparation, sample pretreatment, test device, test temperature and pressure, and qualification indicators. Then, this study offers recommendations aimed at enhancing the hydrogen permeation test method for the liner material. Additionally, the influence of test temperature, test pressure, and polymer material properties on the hydrogen permeability of the liner material is discussed. Finally, the influences of the test temperature, test pressure, and polymer material properties on the hydrogen permeability of the liner material are discussed. Future research direction on the hydrogen permeability and hydrogen permeation test method of the liner material of the type IV hydrogen storage cylinder has been prospected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA