Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(13): 22700-22711, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224962

RESUMO

Localized surface plasmons exhibit promising capabilities in optoelectronic devices. In most cases, the metal nanoparticle arrays are located on interfaces or inside optical cavities. Fano interferences have been observed and explained via the interference between the waves generated by the localized surface plasmon and dielectric interfaces. Conventionally, these Fano interferences are modeled using the modified Fresnel equation. However, certain issues persist in the fundamental physics or in the numerical calculation process. Here, we adopt the equivalent medium theory (Maxwell-Garnett theory, MGT) to calculate and elucidate Fano interferences in different structures, in the region comprising nanoparticle arrays and dielectrics equivalent to a homogeneous layer of media via the mean field theory. Using this method, the Fano interference can be modeled by mixing different materials, i.e., metals and dielectrics in these cases. Furthermore, a multiple-layered equivalent medium theory is proposed to significantly improve the scalability of this simplified numerical method. In other words, this method can be easily extended to nanoparticles with different shapes, sizes, and materials; in addition, it exhibits robust practicability. Compared with the modified Fresnel equation and finite-difference time-domain methods, this MGT-based method can effectively minimize the calculation process, which is beneficial to the prospective application of plasmon photonics.

2.
Phys Chem Chem Phys ; 24(9): 5529-5538, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35172325

RESUMO

Quantum states and arrangement of valence levels determine most of the electronic and optical properties of semiconductors. Since the crystal field split-off hole (CH) band is the top valence band in high-Al-content AlGaN, TM-polarized optical anisotropy has become the limiting factor for efficient deep-ultraviolet (DUV) light emission. Additional potentials, including on-site Coulomb interaction and orbital state coupling induced by magnesium (Mg) doping, are proposed in this work to regulate the valence level arrangement of AlN/Al0.75Ga0.25N quantum wells (QWs). Diverse responses of valence quantum states |pi〉 (i = x, y, or z) of AlGaN to additional potentials due to different configurations and interactions of orbitals revealed by first-principles simulations are understood in terms of the linear combination of atomic orbital states. A positive charge and large Mg dopant in QWs introduce an additional Coulomb potential and modulate the orbital coupling distance. For the CH band (pz orbital), the Mg-induced Coulomb potential compensates the orbital coupling energy. Meanwhile, the heavy/light hole (HH/LH) bands (px and py orbitals) are elevated by the Mg-induced Coulomb potential. Consequently, HH/LH energy levels are relatively shifted upward and replace the CH level to be the top of the valence band. The inversion of optical anisotropy and enhancement of TE-polarized emission are further confirmed experimentally via spectroscopic ellipsometry.

3.
Nanoscale Res Lett ; 17(1): 13, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032237

RESUMO

A systematic study was carried out for strain-induced microscale compositional pulling effect on the structural and optical properties of high Al content AlGaN multiple quantum wells (MQWs). Investigations reveal that a large tensile strain is introduced during the epitaxial growth of AlGaN MQWs, due to the grain boundary formation, coalescence and growth. The presence of this tensile strain results in the microscale inhomogeneous compositional pulling and Ga segregation, which is further confirmed by the lower formation enthalpy of Ga atom than Al atom on AlGaN slab using first principle simulations. The strain-induced microscale compositional pulling leads to an asymmetrical feature of emission spectra and local variation in emission energy of AlGaN MQWs. Because of a stronger three-dimensional carrier localization, the area of Ga segregation shows a higher emission efficiency compared with the intrinsic area of MQWs, which is benefit for fabricating efficient AlGaN-based deep-ultraviolet light-emitting diode.

4.
ACS Appl Mater Interfaces ; 13(28): 32856-32864, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251164

RESUMO

Plasmonic coupling has been demonstrated to be an effective manipulation strategy for emission enhancement in low-dimensional semiconductor materials. Here, dual-mode plasmonic resonances based on a metal dimer structure were proposed to simultaneously enhance the absorption under short-wavelength excitation and excitons' emission at longer wavelengths for CsPbBr3 perovskite quantum dots (QDs). Large-area metal nanodimer arrays with well-controlled local surface plasmon resonance were facilely fabricated by a simple method combined with metal angular deposition and nanosphere lithography. With the addition of an optimized polymethyl methacrylate spacer, the effective plasmonic coupling and interfacial passivation of QDs were successfully achieved in the hybrid system. As a result, the QD films exhibited a significant and approximately 3.95-fold overall fluorescence enhancement when using blue light excitation, showing the novel advantages of dual-mode plasmonic coupling of semiconductor quantum structures for color conversion applications.

5.
Light Sci Appl ; 10: 129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150202

RESUMO

As demonstrated during the COVID-19 pandemic, advanced deep ultraviolet (DUV) light sources (200-280 nm), such as AlGaN-based light-emitting diodes (LEDs) show excellence in preventing virus transmission, which further reveals their wide applications from biological, environmental, industrial to medical. However, the relatively low external quantum efficiencies (mostly lower than 10%) strongly restrict their wider or even potential applications, which have been known related to the intrinsic properties of high Al-content AlGaN semiconductor materials and especially their quantum structures. Here, we review recent progress in the development of novel concepts and techniques in AlGaN-based LEDs and summarize the multiple physical fields as a toolkit for effectively controlling and tailoring the crucial properties of nitride quantum structures. In addition, we describe the key challenges for further increasing the efficiency of DUV LEDs and provide an outlook for future developments.

6.
Nanoscale Res Lett ; 16(1): 99, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081221

RESUMO

Here we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley-Read-Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density.Synopsis: The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.

7.
Light Sci Appl ; 9: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577220

RESUMO

AlGaN has attracted considerable interest for ultraviolet (UV) applications. With the development of UV optoelectronic devices, abnormal carrier confinement behaviour has been observed for c-plane-oriented AlGaN quantum wells (QWs) with high Al content. Because of the dispersive crystal field split-off hole band (CH band) composed of p z orbitals, the abnormal confinement becomes the limiting factor for efficient UV light emission. This observation differs from the widely accepted concept that confinement of carriers at the lowest quantum level is more pronounced than that at higher quantum levels, which has been an established conclusion for conventional continuous potential wells. In particular, orientational p z orbitals are sensitive to the confinement direction in line with the conducting direction, which affects the orbital intercoupling. In this work, models of Al0.75Ga0.25N/AlN QWs constructed with variable lattice orientations were used to investigate the orbital intercoupling among atoms between the well and barrier regions. Orbital engineering of QWs was implemented by changing the orbital state confinement, with the well plane inclined from 0° to 90° at a step of 30° (referred to the c plane). The barrier potential and transition rate at the band edge were enhanced through this orbital engineering. The concept of orbital engineering was also demonstrated through the construction of inclined QW planes on semi- and nonpolar planes implemented in microrods with pyramid-shaped tops. The higher emission intensity from the QWs on the nonpolar plane compared with those on the polar plane was confirmed via localized cathodoluminescence (CL) maps.

8.
Opt Express ; 28(4): 5731-5740, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121788

RESUMO

Enhancement in the light interaction between plasmonic nanoparticles (NPs) and semiconductors is a promising way to enhance the performance of optoelectronic devices beyond the conventional limit. In this work, we demonstrated improved performance of Ga2O3 solar-blind photodetectors (PDs) by the decoration of Rh metal nanoparticles (NPs). Integrated with Rh NPs on oxidized Ga2O3 surface, the resultant device exhibits a reduced dark current of about 10 pA, an obvious enhancement in peak responsivity of 2.76 A/W at around 255 nm, relatively fast response and recovery decay times of 1.76 ms/0.80 ms and thus a high detectivity of ∼1013 Jones. Simultaneously, the photoresponsivity above 290 nm wavelength decreases significantly with improved rejection ratio between ultraviolet A (UVA) and ultraviolet B (UVB) regions, indicative of enhanced wavelength detecting selectivity. The plasmonic resonance features observed in transmittance spectra are consistent with the finite difference time-domain (FDTD) calculations. This agreement indicates that the enhanced electric field strength induced by the localized surface plasmon resonance is responsible for the enhanced absorption and photoresponsivity. The formed localized Schottky barrier at the interface of Rh/Ga2O3 will deplete the carriers at the Ga2O3 surface and lead to the remarkable reduced dark current and thus improve the detectivity. These findings provide direct evidence for Rh plasmonic enhancement in solar-blind spectral region, offering an alternative pathway for the rational design of high-performance solar-blind PDs.

9.
ACS Appl Mater Interfaces ; 9(12): 10798-10804, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266830

RESUMO

Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm2/(V s) and small shifts of threshold voltage (Vth). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the Vth and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

10.
Nanoscale ; 8(15): 7978-83, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27009830

RESUMO

Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.

11.
ACS Appl Mater Interfaces ; 8(12): 7862-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977526

RESUMO

The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

12.
ACS Appl Mater Interfaces ; 8(8): 5408-15, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26856932

RESUMO

Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics.

13.
Small ; 11(44): 5932-8, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26426344

RESUMO

A top-gated MoS2 transistor with 6 nm thick HfO2 is fabricated using an ozone pretreatment. The influence to the top-gated mobility brought about by the deposition of HfO2 is studied statistically, for the first time. The top-gated mobility is suppressed by the deposition of HfO2 , and multilayered samples are less susceptible than monolayer ones.

14.
Nanoscale ; 7(22): 10078-84, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978618

RESUMO

In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.

15.
Small ; 11(2): 208-13, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25115804

RESUMO

Charge trapping layers are formed from different metallic nanocrystals in MoS2 -based nanocrystal floating gate memory cells in a process compatible with existing fabrication technologies. The memory cells with Au nanocrystals exhibit impressive performance with a large memory window of 10 V, a high program/erase ratio of approximately 10(5) and a long retention time of 10 years.

16.
Nanoscale ; 6(24): 14733-9, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25352426

RESUMO

Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

17.
Adv Mater ; 26(36): 6255-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25070646

RESUMO

Experimental evidence of the optimized interface engineering effects in MoS2 transistors is demonstrated. The MoS2/Y2O3/HfO2 stack offers excellent interface control. Results show that HfO2 layer can be scaled down to 9 nm, yet achieving a near-ideal sub-threshold slope (65 mv/dec) and the highest saturation current (526 µA/µm) of any MoS2 transistor reported to date.

18.
Sci Rep ; 4: 5166, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898569

RESUMO

High internal efficiency and high temperature stability ultraviolet (UV) light-emitting diodes (LEDs) at 308 nm were achieved using high density (2.5 × 10(9) cm(-2)) GaN/AlN quantum dots (QDs) grown by MOVPE. Photoluminescence shows the characteristic behaviors of QDs: nearly constant linewidth and emission energy, and linear dependence of the intensity with varying excitation power. More significantly, the radiative recombination was found to dominant from 15 to 300 K, with a high internal quantum efficiency of 62% even at room temperature.

19.
Sci Rep ; 4: 4380, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24625660

RESUMO

We report localised-surface-plasmon (LSP) enhanced deep-ultraviolet light-emitting diodes (deep-UV LEDs) using Al nanoparticles for LSP coupling. Polygonal Al nanoparticles were fabricated on the top surfaces of the deep-UV LEDs using the oblique-angle deposition method. Both the top- and bottom-emission electroluminescence of deep-UV LEDs with 279 nm multiple-quantum-well emissions can be effectively enhanced by the coupling with the LSP generated in the Al nanoparticles. The primary bottom-emission wavelength is longer than the primary top-emission wavelength. This difference in wavelength can be attributed to the substrate-induced Fano resonance effect. For resonance modes with shorter wavelengths, the radiation fraction directed back into the LEDs is largest in the direction that is nearly parallel to the surface of the device and results in total reflection and re-absorption in the LEDs.

20.
Nanoscale Res Lett ; 9(1): 5, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393422

RESUMO

The method of In bilayer pre-deposition and penetrated nitridation had been proposed, which had been proven to have many advantages theoretically. To study the growth behavior of this method experimentally, various pulse times of trimethylindium supply were used to get the optimal indium bilayer controlling by metalorganic vapour phase epitaxy. The results revealed that the InN film quality became better as the thickness of the top indium atomic layers was close to bilayer. A following tuning of nitridation process enhanced the quality of InN film further, which means that a moderate, stable, and slow nitridation process by NH3 flow also plays the key role in growing better-quality InN film. Meanwhile, the biaxial strain of InN film was gradually relaxing when the flatness was increasingly improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA