Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Biol Macromol ; : 132826, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825277

RESUMO

Using bio-based plasticizers derived from biomass resources to replace traditional phthalates can avoid the biotoxicity and non-biodegradability caused by the migration of plasticizers during the application of plastics. In this study, L-lactic acid and levulinic acid were employed as the major biomass monomer to successfully fabricate L-lactic acid-based plasticizers (LBL-n, n = 1.0, 1.5, 2.0, 2.5) containing a diverse number of lactate groups. The plasticizing mechanism was explained, manifesting that L-lactic acid-based plasticizers containing a substantial number of lactate groups could effectively improve the flexibility of poly (lactic acid) (PLA), and the elongation at break was 590 %-750 %. Compared to LBL-1.5 plasticized-PLA films, the tensile strength and modulus of ketonized-LBL-1.5 (KLBL-1.5) plasticized-PLA films increased to 59 % and 163 %, indicating the ketal functionality of plasticizers enhanced the strength of PLA. Meanwhile, the increment of lactate groups and the introduction of the ketal group in the plasticizer increased the crystallization, migration, and volatilization stability of plasticized-PLA films and also kept their outstanding optical transparency. Besides, the biodegradability of KLBL-1.5 was investigated by active soil and Tenebrio molitor experiments, and its degradation products were characterized. The findings indicated that KLBL-1.5 was fully decomposed. Taken together, this paper offers new promise for developing high-efficiency and biodegradable plasticizers.

2.
RSC Adv ; 14(18): 12754-12761, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645521

RESUMO

Enhancing the flame retardancy of electrolytes and the stability of lithium anodes is of great significance to improve the safety performance of lithium-sulfur (Li-S) batteries. It is well known that the most commonly used ether based electrolyte solvents in Li-S batteries have a lower flash point and higher volatility than the ester electrolyte solvents in Li-ion batteries. Hence, lithium-sulfur batteries have greater safety risks than lithium-ion batteries. Herein, ethoxy(pentafluoro)cyclotriphosphazene (PFPN), which is commonly used as a flame retardant for ester electrolytes in lithium-ion batteries, is utilized as both a film-forming electrolyte additive and a flame retardant additive for the ether electrolyte to investigated its applicability in Li-S batteries. It is found that the ether electrolyte containing PFPN not only has good flame retardant properties and a wide potential window of about 5 V, but also can form a stable SEI film on the surface of a lithium anode. As a result, with the ether-based electrolyte containing 10 wt% PFPN, Li-Cu and Li-S batteries all delivered a stable cycling performance with a high coulombic Efficiency and a long-lifespan performance, which were all superior to the batteries using the ether-based electrolyte without PFPN. This study demonstrates an effective solution to solve the problems of flammable ether-based electrolytes and reactive lithium anodes, and it may contribute to the development of safe Li-S batteries.

3.
Int J Biol Macromol ; 258(Pt 2): 129110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161016

RESUMO

Polymer modification using silicone rubber represents a promising avenue for enhancing physico-mechanical properties. However, achieving optimal performance through direct blending is hindered by the poor interface compatibility between silicone rubber and the matrix. In this study, we prepared super-tough thermoplastic vulcanizates (TPVs) of polylactic acid/silicone rubber through dynamic vulcanization with PLA, methyl vinyl silicone rubber (MVQ), glycidyl methacrylate grafted MVQ (MVQ-g-GMA), and fumed silica nanoparticles (SiO2). The impact of the SiO2 addition in MVQ on the morphology, mechanical properties, crystallization, and thermal properties of the TPVs was investigated. The results showed that MVQ-g-GMA and SiO2 exhibited a synergistic compatibilization effect significantly improving the interfacial adhesion between PLA and MVQ. Therefore, the impact and tensile strength of the TPVs increased from 8.0 kJ/m2 and 22.2 MPa to 62.6 kJ/m2 and 36.7 MPa, respectively. Moreover, the TPVs also presented good low-temperature toughness with a maximum impact strength of 40.4 kJ/m2 at -20 °C. Additionally, improvements in thermal stability and crystallization rate were also observed. Overall, combining organic and inorganic synergistic compatibilization is a feasible and effective method to fabricate outstanding low-temperature toughness to PLA.


Assuntos
Dióxido de Silício , Elastômeros de Silicone , Poliésteres , Polímeros
4.
Infect Drug Resist ; 16: 6647-6659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849792

RESUMO

Purpose: To determine the clinical features, laboratory findings, antibiotic treatment, and outcomes of neonatal listeriosis in a specialized tertiary hospital in Wuhan, China. Patients and Methods: We retrospectively analyzed the medical records of patients diagnosed with neonatal listeriosis at Maternal and Child Health Hospital of Hubei Province from January 2015 to December 2022. Listeriosis was indicated by positive culture for Listeria monocytogenes (LM). Results: A total of 11 cases were included in our study. The incidence rate of neonatal listeriosis was 2.06 per 100,000 live births. Seventy-three percent of the cases were born prematurely, caused early onset sepsis. Respiratory distress (100%) was the most common and earliest symptom, followed by fever (64%) and rashes (27%). The levels of C-reactive protein (CRP) and procalcitonin (PCT) were elevated in 100% of the cases. The median time-to-positivity (TTP) of the culture was 15 hours (range 9-28hours). Of the 11 neonates, 6 were cured, 2 showed improvement, and 3 died, with a mortality rate of 27%. There were statistically significant differences in Apgar score at 5 minutes (p=0.037) and CRP (p=0.025) between the survival group and fatality group. Ampicillin was sensitive to LM isolates and effective for therapy if initiated early. Conclusion: Neonatal listeriosis is a rare but severe infection with a high mortality rate. Early identification and appropriate use of effective antibiotics are particularly critical for achieving positive outcomes. Apgar score and CRP are relevant indices for prognosis. Ampicillin is the first-line therapy and can be empirically administered to neonates suspected of having listeriosis.

5.
Int J Biol Macromol ; 253(Pt 3): 126790, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703967

RESUMO

Preparing a super-tough polylactic acid (PLA) material while maintaining its biodegradability is a significant challenge. This study synthesized a biodegradable unsaturated poly(butylene succinate-co-fumarate)-poly(ethylene glycol) multiblock copolymer (PBSFG) and dynamically vulcanized it with PLA to obtain super-tough blends. The PBSFG self-vulcanized and formed a crosslinked "hard-soft" core-shell rubber phase in the blending process, where the PBSF segment acted as the core and PEG as the shell. As a result, the elongation at break and notched Izod impact strength of PLA increased significantly from 3 % to 66 % and from 3.2 to 58.0 kJ/m2, respectively. Furthermore, adding a small amount of dicumyl peroxide (DCP) promoted dynamic vulcanization and improved the compatibility between PLA and PBSFG. With the addition of 0.03 % DCP, the elongation at break and notched Izod impact strength of PLA/PBSFG were further increased to 218 % and 88.9 kJ/m2, respectively. Meanwhile, the crystallization rate of PLA was enhanced by the addition of PBSFG and DCP. The PLA/PBSFG blends also degraded in a proteinase K Tris-HCl buffered buffer solution. Finally, fully biodegradable and super-tough PLA blends were achieved.


Assuntos
Éter , Poliésteres , Poliésteres/química , Borracha/química , Éteres , Etil-Éteres
6.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047424

RESUMO

At present, the development and usage of degradable plastics instead of traditional plastics is an effective way to solve the pollution of marine microplastics. Poly (butylene adipate-co-terephthalate) (PBAT) is known as one of the most promising biodegradable materials. Nevertheless, the degradation rate of PBAT in water environment is slow. In this work, we successfully prepared four kinds of high molecular weight polyester copolyesters (PBATGA) via quaternary copolymerization. The results showed that the intrinsic viscosity of PBATGA copolymers ranged from 0.74 to 1.01 dL/g with a glycolic acid content of 0-40%. PBATGA copolymers had excellent flexibility and thermal stability. The tensile strength was 5~40 MPa, the elongation at break was greater than 460%, especially the elongation at break of PBATGA10 at 1235%, and the thermal decomposition temperature of PBATGA copolyesters was higher than 375 °C. It was found that PBATGA copolyester had a faster hydrolysis rate than PBAT, and the weight loss of PBATGA copolymers showed a tendency of pH = 12 > Lipase ≈ pH = 7 > pH = 2. The quaternary polymerization of PBAT will have the advantage of achieving industrialization, unlike the previous polymerization process. In addition, the polymerization of PBATGA copolyesters not only utilizes the by-products of the coal chemical industry, but also it can be promising in the production of biodegradable packaging to reduce marine plastic pollution.


Assuntos
Plásticos , Poliésteres , Polimerização , Poliésteres/química , Polímeros , Adipatos
7.
ACS Appl Mater Interfaces ; 15(3): 4343-4357, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629286

RESUMO

The electrochemical performance is significantly influenced by the structure and surface morphology of the electrode materials used in supercapacitors. Using the floating catalytic chemical vapor deposition (FCCVD) technique, a self-supporting, flexible layer of continuously reinforced carbon nanotube woven film (CNWF) was developed. Then, polyaniline (PANI) was formed in the conductive network of CNWF using cyclic voltammetry electrochemical polymerization (CVEP) in various aqueous electrolytes to produce a series of flexible CNWF/PANI composite films. The impacts of the CVEP period, electrolyte type, and electrolyte concentration on the surface morphology, doping degree, and hydrophilicity of CNWF/PANI composite films were thoroughly examined. The CNWF/PANI1-15C composite electrode, which was created using 15 cycles of CVEP in a solution of 1 M sodium bisulfate, displayed a distinctive coral-like PANI layer with a well-defined sharp nanoprotuberance structure, a 48% doping degree, and a quick reversible pseudocapacitive storage mechanism. At a current density of 1 A g-1, the energy density and specific capacitance reached 54.9 Wh kg-1 and 1098.0 F g-1, respectively, with a specific capacitance retention rate of 75.9% maintained at 10 A g-1. Both the specific capacitance and coulomb efficiency were maintained at 96.9% and more than 98.1% of their initial values after being subjected to 2000 cycles of galvanostatic charge and discharge, demonstrating excellent electrochemical cycling stability. The CNWF/PANI1-15C composite film, an ideal electrode material, offers a promising future in the field of flexible energy storage due to its exceptional mechanical properties (127.9 MPa tensile strength and 16.2% elongation at break).

8.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232379

RESUMO

The main problem of manufacturing with traditional biodegradable plastics is that it is more expensive than manufacturing with polymers derived from petroleum, and the application scope is currently limited due to poor comprehensive performance. In this study, a novel biodegradable poly(butylene adipic acid/terephthalate-co-glycolic acid) (PBATGA) copolyester with 25-60% glycolic acid units was successfully synthesized by esterification and polycondensation using cheap coal chemical byproduct methyl glycolate instead of expensive glycolic acid. The structure of the copolyester was characterized by ATR-FTIR, 1H NMR, DSC, and XRD; and its barrier property, water contact angle, heat resistance, and mechanical properties were tested. According to the experiment result, the PBATGA copolyesters showed improved oxygen (O2) and water vapor barrier character, and better hydrophilicity when compared with PBAT. The crystallization peaks of PBATGAs were elevated from 64 °C to 77 °C when the content of the GA unit was 25 mol %, meanwhile, the elongation at the break of PBATGA25 was more than 1300%. These results indicate that PBATGA copolyesters have good potentiality in high O2 and water vapor barrier and degradable packaging material.


Assuntos
Plásticos Biodegradáveis , Petróleo , Adipatos , Alcenos , Carvão Mineral , Glicolatos , Oxigênio , Ácidos Ftálicos , Poliésteres/química , Polímeros/química , Vapor
9.
Infect Drug Resist ; 15: 2983-2993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706924

RESUMO

Purpose: To determine the distribution and antibiotic resistance patterns among pathogens that cause neonatal sepsis (NS) and to assess trends in antibiotic resistance. Patients and methods: A total of 864 patients with sepsis admitted to a neonatal intensive care unit (NICU) between 2014 and 2021 were enrolled. Data on neonate age and sex, pathogenic microbes, and antimicrobial susceptibility were collected. Univariate and linear regression analyses were performed to determine the differences and trends in antibiotic resistance rates. Results: The overall incidence rate of NS was 4.59 cases per 1000 live births. Of these cases, 255 (29.5%) were early-onset neonatal sepsis (EONS) and 609 (70.5%) were late-onset neonatal sepsis (LONS). A total of 670 (70.5%) gram-positive cocci and 171 (19.8%) gram-negative bacilli were identified. Among the 552 coagulase-negative Staphylococcus (CoNS) strains, the rate of oxacillin resistance was 70.6%, but no strains were resistant to linezolid, vancomycin or tigecycline. Among the antibiotic resistance patterns of the top three gram-negative pathogens, K. pneumoniae showed the highest rates of resistance, with resistance rates of 37.9% and 39.4% to ertapenem and imipenem, respectively, while E. coli and Enterobacter cloacae showed high levels of susceptibility to both. With regard to the trends in resistance among important pathogens, the rates of resistance to rifampicin, ciprofloxacin, levofloxacin, moxifloxacin and clindamycin by Staphylococcus epidermidis significantly decreased (p<0.05) during the study period. E. coli strains exhibited a significant increase in ceftriaxone resistance during the study period (p<0.05). Conclusion: CoNS was the main microbe that caused NS, followed by E. coli. The bacterial isolates showed varying levels of resistance to the antimicrobial drugs tested. Thus, periodic surveillance in hospital settings to monitor changes in pathogens and antibiotic resistance is important.

10.
Infect Drug Resist ; 15: 427-438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177910

RESUMO

PURPOSE: To evaluate the microorganisms involved in neonatal septicemia and its antibiotic susceptibility pattern and to further investigate the factors associated with the length of intensive care unit (ICU) stay in neonatal septicemia. PATIENTS AND METHODS: A total of 297 infants with septicemia at neonatal ICU (NICU), Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology from 2016 to 2020 were enrolled. Identification of bacterial species was done using the standard positive blood culture. Data included demographics, signs at time of septicemia, laboratory values, patient sources, complications, microbiologic characteristics, and the duration of ICU stay. Univariate and multivariate gamma regression analyses were applied to determine the variables associated with ICU stay. RESULTS: The result demonstrated that the main causative pathogens of neonatal septicemia in our hospital were Gram-positive bacteria, among which Staphylococcus epidermidis (100 isolates, 47.17%) was the main conditional pathogens; Escherichia coli (27 isolates, 49.09%) was most frequently isolated among Gram-negative pathogens. Gram-positive bacteria had higher susceptibility to vancomycin, tigecycline and linezolid. Escherichia coli was susceptive to piperacillin (27/27, 100.00%), cefotetan (27/27, 100.00%), meropenem and imipenem (27/27, 100.00%). Streptococcus agalactiae (95% CI: 0.140-0.539), for patients who were transferred from other hospital (95% CI: 0.016 to 0.354), septicemia during hospitalization (95% CI: 0.411 to 0.825), the use of antibacterial drug during pregnancy (95% CI: 0.362 to 2.136), feeding intolerance (95% CI: 0.127 to 0.437), bradycardia (95% CI: 0.196 to 0.838), septicemia newborns have complications (95% CI: 0.063 to 0.291), the onset age (95% CI: 0.006 to 0.023), TRIPS score (95% CI: 0.005 to 0.016), and CRP level (95% CI: 0.002 to 0.005) were related to prolonged ICU stay days. CONCLUSION: This study summarized common pathogens and associated drug sensitivity, and factors influencing ICU stay length. Prevention and control policy in the NICU should be strengthened.

11.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009957

RESUMO

The charge storage mechanism and capacity of supercapacitors completely depend on the electrochemical and mechanical properties of electrode materials. Herein, continuously reinforced carbon nanotube film (CNTF), as the flexible support layer and the conductive skeleton, was prepared via the floating catalytic chemical vapor deposition (FCCVD) method. Furthermore, a series of novel flexible self-supporting CNTF/polyaniline (PANI) nanocomposite electrode materials were prepared by cyclic voltammetry electrochemical polymerization (CVEP), with aniline and mixed-acid-treated CNTF film. By controlling the different polymerization cycles, it was found that the growth model, morphology, apparent color, and loading amount of the PANI on the CNTF surface were different. The CNTF/PANI-15C composite electrode, prepared by 15 cycles of electrochemical polymerization, has a unique surface, with a "sea-cucumber-like" 3D nanoprotrusion structure and microporous channels formed via the stacking of the PANI nanowires. A CNTF/PANI-15C flexible electrode exhibited the highest specific capacitance, 903.6 F/g, and the highest energy density, 45.2 Wh/kg, at the current density of 1 A/g and the voltage window of 0 to 0.6 V. It could maintain 73.9% of the initial value at a high current density of 10 A/g. The excellent electrochemical cycle and structural stabilities were confirmed on the condition of the higher capacitance retention of 95.1% after 2000 cycles of galvanostatic charge/discharge, and on the almost unchanged electrochemical performances after 500 cycles of bending. The tensile strength of the composite electrode was 124.5 MPa, and the elongation at break was 18.9%.

12.
J Cell Physiol ; 236(1): 405-416, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572960

RESUMO

Epigallocatechin-3-gallate (EGCG) plays a crucial role in hepatic lipid metabolism. However, the underlying regulatory mechanism of hepatic lipid metabolism by EGCG in canine is unclear. Primary canine hepatocytes were treated with EGCG (0.01, 0.1, or 1 µM) and BML-275 (an AMP-activated protein kinase [AMPK] inhibitor) to study the effects of EGCG on the gene and protein expressions associated with AMPK signaling pathway. Data showed that treatment with EGCG had greater activation of AMPK, as well as greater expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) along with upregulated messenger RNA (mRNA) abundance and protein abundance of PPARα-target genes. EGCG decreased the expression levels and transcriptional activity of sterol regulatory element-binding protein 1c (SREBP-1c) along with downregulated mRNA abundance and protein abundance of SREBP-1c target genes. Of particular interest, exogenous BML-275 could reduce or eliminate the effects of EGCG on lipid metabolism in canine hepatocytes. Furthermore, the content of triglyceride was significantly decreased in the EGCG-treated groups. These results suggest that EGCG might be a potential agent in preventing high-fat diet-induced lipid accumulation in small animals.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Catequina/análogos & derivados , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Transdução de Sinais/genética , Animais , Catequina/genética , Células Cultivadas , Dieta Hiperlipídica , Cães , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Triglicerídeos/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Food Chem ; 338: 127932, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932080

RESUMO

An efficient and reliable duplex SYBR Green real-time quantitative PCR (qPCR) method for beef products adulteration detection was developed based on bovine specific and vertebrate universal primers. By analyzing the numbers, positions (Tm value) of melting curve peaks of the duplex PCR products, we simultaneously identified bovine and preliminary screened non-bovine in samples, and also semi-quantified the bovine percentage according to the area ratios of peaks. All of these were necessary for adulteration determination. The specific and universal primers were designed based on mitochondrial genes ND4 and 16S rRNA respectively, their amplicons Tm values were 72.6 ± 0.5 °C and 79-81 °C. There might be some other peaks at 74-78 °C and above 81 °C if non-bovine components existed. Thelimit of detectionwas 1 pgforbovineDNA, and1 - 30 pg fornon-bovineDNAbasedon differentspecies.


Assuntos
Compostos Orgânicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carne Vermelha/análise , Animais , Benzotiazóis , Bovinos , Primers do DNA/genética , Diaminas , Qualidade dos Alimentos , Quinolinas
14.
Anim Biosci ; 34(4): 670-679, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32810934

RESUMO

OBJECTIVE: Glucose transporter 9 (GLUT9) is a uric acid transporter that is associated with uric absorption in mice and humans; but it is unknown whether GLUT9 involves in chicken uric acid regulation. This experiment aimed to investigate the chicken GLUT9 expression and serum uric acid (SUA) level. METHODS: Sixty chickens were divided into 4 groups (n = 15): a control group (NC); a sulfonamide-treated group (SD) supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fishmeal group (FM) supplemented with 16% fishmeal in diet; and a uric acid-injection group (IU), where uric acid (250 mg/kg) was intraperitoneally injected once a day. The serum was collected weekly to detect the SUA level. Liver, kidney, jejunum, and ileum tissues were collected to detect the GLUT9 mRNA and protein expression. RESULTS: The results showed in the SD and IU groups, the SUA level increased and GLUT9 expression increased in the liver, but decreased in the kidney, jejunum, and ileum. In the FM group, the SUA level decreased slightly and GLUT9 expression increased in the kidney, but decreased in the liver, jejunum, and ileum. Correlation analysis revealed that liver GLUT9 expression correlated positively, and renal GLUT9 expression correlated negatively with the SUA level. CONCLUSION: These results demonstrate that there may be a feedback regulation of GLUT9 in the chicken liver and kidney to maintain the SUA balance; however, the underlying mechanism needs to be investigated in future studies.

15.
Exp Ther Med ; 21(1): 20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33235629

RESUMO

The aim of the present study was to investigate the immunoregulatory effects of Astragalus polysaccharide (APS) on RAW264.7 cells. The production of cytokines by RAW264.7 cells was analyzed using ELISA, while cell viability and optimal concentration of APS were assessed using the Cell Counting Kit-8 assay. In addition, the mRNA levels of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α were determined by reverse transcription-quantitative PCR analysis. The levels of co-stimulatory molecules and cell cycle distribution were assessed by flow cytometry. Electrophoretic mobility shift assay was used to determine the effects of APS on p65 expression. Compared with controls, APS enhanced the production of NO, the gene expression of TNF-α, IL-6 and iNOS and the protein levels of phosphorylated p65, p38, Jun N-terminal kinase and extracellular signal regulated kinase in RAW264.7 cells, whereas these effects of APS were alleviated by pyrrolidine dithiocarbamate. The results of the present study indicated that the immunoregulatory effects of APS are mediated, at least in part, via the activation of the NF-κB p65/MAPK signaling pathway.

16.
Br J Hosp Med (Lond) ; 81(10): 1-9, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135928

RESUMO

After initially emerging in late 2019, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly to cause a global pandemic. SARS-CoV-2 is a betacoronavirus that is closely related to severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, all of which can cause severe lung injury, respiratory distress and cytokine storm. While mortality rates associated with SARS-CoV-2 are lower than those associated with severe acute respiratory syndrome coronavirus or Middle East respiratory syndrome coronavirus, it is more contagious and spreads more rapidly than these other viruses. This article summarises the epidemiology and potential options for treating COVID-19 to give a foundation for future studies of the diagnosis, treatment and prevention of this deadly disease.


Assuntos
Betacoronavirus , Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus/isolamento & purificação , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Pneumonia Viral/transmissão , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
18.
Front Cell Dev Biol ; 8: 245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411699

RESUMO

Elevated plasma non-esterified fatty acid (NEFA) levels and hepatocytes damage are characteristics of ketosis in dairy cows. Oxidative stress is associated with the pathogenesis of NEFA-induced liver damage. However, the exact mechanism by which oxidative stress mediates NEFA-induced hepatocytes apoptosis and liver injury remains poorly understood. The results of the present study demonstrated that NEFA contribute to reactive oxygen species (ROS) generation, resulting in an imbalance between oxidative and antioxidant species, transcriptional activation of p53, transcriptional inhibition of nuclear factor E2-related factor 2 (Nrf2), loss of mitochondria membrane potential (MMP) and release of apoptosis-inducing factor (AIF) and cytochrome c (cyt c) into the cytosol, leading to hepatocytes apoptosis. Besides, NEFA triggered apoptosis in dairy cow hepatocytes via the regulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), Bcl-2-associated X protein (Bax), B-cell lymphoma gene 2 (Bcl-2), caspase 9 and poly (ADP-ribose) polymerase (PARP). Pretreatment with the inhibitor SP600125 or PD98059 or the antioxidant N-acetylcysteine (NAC) revealed that NEFA-ROS-JNK/ERK-mediated mitochondrial signaling pathway plays a crucial role in NEFA-induced hepatocytes apoptosis. Moreover, the results suggested that the transcription factors p53 and Nrf2 function downstream of this NEFA-ROS-JNK/ERK pathway and are involved in NEFA-induced hepatocytes apoptosis. In conclusion, these findings indicate that the NEFA-ROS-JNK/ERK-mediated mitochondrial pathway plays an important role in NEFA-induced dairy cow hepatocytes apoptosis and strongly suggests that the inhibitors SP600125 and PD98059 and the antioxidant NAC may be developed as therapeutics to prevent hyperlipidemia-induced apoptotic damage in ketotic dairy cows.

19.
Animals (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230804

RESUMO

Dairy cows usually experience negative energy balance coupled with an increased incidence of fatty liver during the periparturient period. The purpose of this study was to investigate the effect of hepatic steatosis on the expression of the sirtuin 1 (SIRT1), along with the target mRNA and protein expressions and activities related to lipid metabolism in liver tissue. Control cows (n = 6, parity 3.0 ± 2.0, milk production 28 ± 7 kg/d) and mild fatty liver cows (n = 6, parity 2.3 ± 1.5, milk production 20 ± 6 kg/d) were retrospectively selected based on liver triglycerides (TG) content (% wet liver). Compared with the control group, fatty liver cows had greater concentrations of cholesterol and TG along with the typically vacuolated appearance and greater lipid droplets in the liver. Furthermore, fatty liver cows had greater mRNA and protein abundance related to hepatic lipid synthesis proteins sterol regulatory element binding proteins (SREBP-1c), long-chain acyl-CoA synthetase (ACSL), acyl-CoA carbrolase (ACC) and fatty acid synthase (FAS) and lipid transport proteins Liver fatty acid binding protein (L-FABP), apolipoprotein E (ApoE), low density lipoprotein receptor (LDLR) and microsomal TG transfer protein (MTTP) (p < 0.05). However, they had lower mRNA and protein abundance associated with fatty acid ß-oxidation proteins SIRT1, peroxisome proliferator-activated receptor co-activator-1 (PGC-1α), peroxisome proliferator-activated receptor-α (PPARα), retinoid X receptor (RXRα), acyl-CoA 1 (ACO), carnitine palmitoyltransferase 1 (CPT1), carnitine palmitoyltransferase 2 (CPT2) and long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD) (p < 0.05). Additionally, mRNA abundance and enzyme activity of enzymes copper/zinc superoxide dismutase (Cu/Zn SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and manganese superoxide dismutase (Mn SOD) decreased and mRNA and protein abundance of p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1 (Nrf1), mitochondrial transcription factor A (TFAM) decreased (p < 0.05). Lower enzyme activities of SIRT1, PGC-1α, Cu/Zn SOD, CAT, GSH-Px, SREBP-1c and Mn SOD (p < 0.05) and concentration of reactive oxygen species (ROS) were observed in dairy cows with fatty liver. These results demonstrate that decreased SIRT1 associated with hepatic steatosis promotes hepatic fatty acid synthesis and inhibits fatty acid ß-oxidation. Hence, SIRT1 may represent a novel therapeutic target for the treatment of the fatty liver disease in dairy cows.

20.
J Nutr Biochem ; 78: 108324, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32004926

RESUMO

Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Obesidade/terapia , Polifenóis/administração & dosagem , Chá/química , Animais , Análise por Conglomerados , Dieta Hiperlipídica , Suplementos Nutricionais , Cães , Firmicutes/classificação , Fusobactérias/classificação , Guanosina Trifosfato/metabolismo , Inflamação , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Obesidade/metabolismo , Filogenia , RNA Ribossômico 16S , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA