Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 295: 110126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896939

RESUMO

The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.


Assuntos
Galinhas , Coinfecção , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Mycoplasma gallisepticum/patogenicidade , Animais , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Coinfecção/microbiologia , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doença de Newcastle/virologia , Apoptose , Imunidade Inata , Replicação Viral
2.
Vet Microbiol ; 290: 109973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211361

RESUMO

Newcastle disease virus (NDV) is an RNA virus that can promote its own replication through the inhibition of cellular mitochondrial fusion. The proteins involved in mitochondrial fusion, namely mitofusin 1 (Mfn1) and optic atrophy 1 (OPA1) are associated with interferon-beta (IFN-ß) secretion during NDV infection. However, the precise mechanism by which NDV modulates the Mfn1-mediated or OPA1-mediated fusion of mitochondria, thereby impacting IFN-ß, remains elusive. This study revealed that the downregulation of the mitochondrial protein known as coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) exerts a negative regulatory effect on OPA1 and Mfn1 in human lung adenocarcinoma (A549) cells during the late stage of NDV infection. This reduction in CHCHD10 expression impeded cellular mitochondrial fusion, subsequently leading to a decline in the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB), ultimately resulting in diminished secretion of IFN-ß. In contrast, the overexpression of CHCHD10 alleviated infection-induced detrimental effect in mitochondrial fusion, thereby impeding viral proliferation. In summary, NDV enhances its replication by inhibiting the CHCHD10 protein, which impedes mitochondrial fusion and suppresses IFN-ß production through the activation of IRF3 and NF-κB.


Assuntos
NF-kappa B , Vírus da Doença de Newcastle , Humanos , Animais , Vírus da Doença de Newcastle/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Dinâmica Mitocondrial , Interferon beta/genética , Interferon beta/metabolismo , Proliferação de Células , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Vet Microbiol ; 290: 109986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244394

RESUMO

Newcastle disease (ND) is a disease that threatens the world's poultry industry, which is caused by virulent Newcastle disease virus (NDV). As its pathogenic mechanism remains not fully clear, the proteomics of NDV-infected cells were analyzed. The results revealed that coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) protein displayed a significant decrease at the late stage of NDV infection. To investigate the function of CHCHD10 in NDV infection, its expression after NDV infection was detected both in vivo and in vitro. Besides, the tissue viral loads and pathological damage of C57BL/6 mice with CHCHD10 differently expressed were also investigated. The results showed that the CHCHD10 expression was significantly decreased both in vivo and in vitro at the late stage of NDV infection. The viral loads were significantly higher in CHCHD10 silenced C57BL/6 mice, along with more severe pathological damage and vice versa.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Doenças dos Roedores , Camundongos , Animais , Vírus da Doença de Newcastle/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Camundongos Endogâmicos C57BL , Aves Domésticas , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA