RESUMO
We aimed to investigate the regulatory function of the soybean transcription factor R2R3-MYB (GmMYB68) in isoflavone biosynthesis. Through comprehensive subcellular and chromosomal localization analyses, we found that GmMYB68 was predominantly localized to the nucleus and mapped to chromosome Gm04. Notably, SSR markers near this gene significantly correlated with seed isoflavone content. GmMYB68 overexpression markedly increased isoflavone contents, confirming its positive role in regulating isoflavone synthesis. GmMYB68 also played a crucial role in the response of soybean to abiotic stress. Using RNA-seq and yeast one-hybrid techniques, we discovered an intricate interaction between GmMYB68 and key isoflavone biosynthesis genes GmCHS7 and GmCHS8. These findings provide novel insights into the mechanisms underlying isoflavone biosynthesis. Furthermore, using yeast two-hybrid experiments, we identified proteins interacting with GmMYB68, suggesting roles in the synthesis of physiologically active compounds and abiotic stress response. We not only elucidated the regulatory mechanisms of GmMYB68 in isoflavone biosynthesis and abiotic stress response but also constructed a molecular network encompassing GmMYB68, GmCHS7, and GmCHS8. This network provides a theoretical basis for a better understanding of and strategies for improving soybean isoflavone biosynthesis.
RESUMO
BACKGROUND: In the central nervous system, type 2 vesicular monoamine transporters (VMAT2) are responsible for the reuptake of monoamines from synaptic junction back to pre-synaptic terminal vesicles. These transporters are functionally crucial as they reflect the integrity of monoamine neurons. D6-[18F]FP-(+)-DTBZ, a novel deuterated VMAT2 radioligand, has shown promise as a potential PET tracer for the diagnosis of Parkinson's disease (PD). This study evaluates the biodistribution and dosimetry of D6-[18F]FP-(+)-DTBZ and includes a head-to-head comparison with its non-deuterated version, [18F]FP-(+)-DTBZ (AV-133), in healthy individuals and PD patients. RESULTS: The automated synthesis of D6-[18F]FP-(+)-DTBZ using the SPE method was accomplished in 35 min, yielding a high radiochemical purity (> 99%) and high radiochemical yields (35 ± 5%). The biodistribution and dosimetry study indicated an effective dose of 37.1 ± 7.2 µSv/MBq, with the liver receiving the highest radiation dose (289.6 ± 42.1 µGy/MBq), followed by pancreas (185.2 ± 29.1 µGy/MBq). Brain imaging with D6-[18F]FP-(+)-DTBZ exhibited a significantly increased uptake in VMAT2-rich regions, particularly the striatum. In a head-to-head comparison between [18F]FP-(+)-DTBZ and D6-[18F]FP-(+)-DTBZ, the latter exhibited approximately 15% higher SUVR in the caudate, putamen, and nucleus accumbens. Preliminary studies in PD patients showed a substantial reduction in VMAT2 uptake in the striatum, with the most pronounced decrease observed in the putamen (a 53% decline). CONCLUSIONS: D6-[18F]FP-(+)-DTBZ is a safe and improved VMAT2-specific imaging agent, which may be suitable for diagnosing PD by evaluating changes in VMAT2 binding of monoamine neurons in the brain. Trial registration Chinese Clinical Trial Registry, ChiCTR2200057218, Registered 16 August 2021, https://www.chictr.org.cn/bin/project/edit?pid=142725 .
RESUMO
Chromatic confocal technology is widely used for precise, steady, and efficient displacement measurement in many industrial fields. It employs the confocal and dispersion principles to encode axial positions with the wavelengths of the reflected broad spectrum. The typical chromatic confocal sensor includes a light source, a dispersion objective, conjugate pinholes, and a spectral detection device. This study offers an overview of the current research on chromatic confocal technology. Because of its good performance in displacement detection, chromatic confocal technology has been widely used in contour measurement, biomedical imaging, and thickness measurements, as part of global and professional research. Due to its structural flexibility, it is also easily integrated into industrial equipment for in-machine and online profile measurements. It holds significant potential for future applications in industrial manufacturing and scientific research. However, there are also some challenges to be explored in terms of the broadband light source, dispersive optics design, and the balance between speed and accuracy in signal processing.
RESUMO
Rheumatoid arthritis (RA) is marked by joint damage and inflammation, with B cells playing a key role by generating autoantibodies. This study shows that G protein-coupled receptor 40 (GPR40) deficiency in B cells leads to increased activation, proliferation, antibody production, germinal center formation, and class switch recombination. GPR40 regulates Plcγ2 phosphorylation and intracellular calcium flux downstream of the B cell receptor by binding to the Gαq protein. In GPR40-deficient mice, susceptibility to collagen-induced arthritis was higher. GPR40 agonists showed potential as therapeutic agents, and their reduced expression in patients with RA correlated with disease onset, suggesting GPR40 as a potential therapeutic target and diagnostic marker.
Assuntos
Artrite Reumatoide , Linfócitos B , Receptores Acoplados a Proteínas G , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/imunologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Feminino , Camundongos KnockoutRESUMO
Several studies have revealed altered intrinsic neural activity in chronic insomnia (CI). However, the temporal variability of intrinsic neural activity in CI is rarely mentioned. This study aimed to explore static and temporal dynamic alterations of regional homogeneity (ReHo) in CI and excavate the potential associations between these changes and clinical characteristics. Eighty-seven patients with CI and seventy-eight healthy controls (HCs) were included. Resting-state functional magnetic resonance imaging was performed on all subjects and both static and dynamic ReHo were used to detect local functional connectivity. We then tested the relationship between altered brain regions, disease duration, and clinical scales. The receiver operating characteristic curve analysis was used to reveal the potential capability of these indicators to screen CI patients from HCs. CI showed increased dynamic ReHo in the right precuneus and decreased static ReHo in the right cerebellum_6. The dynamic ReHo values of the right precuneus were negatively correlated with the self-rating depression score and the static ReHo values of the right cerebellum_6 were positively correlated with the Montreal Cognitive Assessment-Naming score. In addition, the combination of the two metrics showed a potential capacity to distinguish CI patients from HCs, which was better than a single metric alone. The present study has revealed the altered local functional connectivity under static and temporal dynamic conditions in patients with CI, and found the relationships between these changes, mood-related scales, and cognitive-related scales. These may be useful in elucidating the neurological mechanisms of CI and accompanying symptoms.
RESUMO
Parkinson's Disease (PD) is a degenerative disease driven by neuroinflammation. Nuclear receptor subfamily 1 group H member 4 (NR1H4), a nuclear receptor involved in metabolic and inflammatory regulation, is found to be widely expressed in central nervous system. Previous studies suggested the protective role of NR1H4 in various diseases related to inflammation, whether NR1H4 participates in PD progression remains unknown. To investigate the role of NR1H4 in neuroinflammation regulation, especially astrocyte activation during PD, siRNA and adenovirus were used to manipulate Nr1h4 expression. RNA-sequencing (RNA-seq), quantitative real-time PCR, enzyme-linked immunosorbent assay, Chromatin immunoprecipitation and western blotting were performed to further study the underlying mechanisms. We identified that NR1H4 was down-regulated during PD progression. In vitro experiments suggested that Nr1h4 knockdown led to inflammatory response, reactive oxygen species generation and astrocytes activation whereasNr1h4 overexpressionhad the opposite effects. The results of RNA-seq on astrocytes revealed that NR1H4 manipulated neuroinflammation in a CEBPß/NF-κB dependent manner. Additionally, pharmacological activation of NR1H4 via Obeticholic acid ameliorated neuroinflammation and promoted neuronal survival. Our study first proved the neuroprotective effects of NR1H4against PD via inhibiting astrocyte activation and neuroinflammation in a CEBPß/NF-κB dependent manner.
Assuntos
Astrócitos , Proteína beta Intensificadora de Ligação a CCAAT , NF-kappa B , Doenças Neuroinflamatórias , Doença de Parkinson , Astrócitos/metabolismo , Astrócitos/imunologia , Animais , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Doença de Parkinson/metabolismo , Humanos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Células Cultivadas , Transdução de Sinais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
RESUMO
BACKGROUND: The conflicting results about the relationship between certain psychiatric disorders and glioma has been reported in previous studies. Moreover, little is known about the common pathogenic mechanism between psychiatric symptoms and glioma. This study aims to find out mental disorders related etiology of glioma and to interpret the underlying biological mechanisms. METHODS: A panel of SNPs significantly associated with eight psychiatric disorders (ADHD, SCZ, Insomnia, NEU, MDD, MI, BIP, and SWB) were identified as exposure related genetic instruments. Summary GWAS data for glioma comes from eight independent datasets. Two sample Mendelian randomization study was undertaken by IVW, RAPS, MR.Corr, and BWMR methods. This study incorporated the glioma associated CGGA cohort and Rembrandt cohort. ssGSEA, variance expression, and KEGG were conducted to analyze the psychiatric disorders associated genes expression profiling and associated functional enrichment in the glioma patients. RESULTS: ADHD has a suggestive risk effect on all glioma (OR = 1.15, 95%CI = 1.01--1.29, P = 0.028) and a significant causal effect on non-GBM glioma (OR = 1.33, 95%CI = 1.12--1.58, P = 0.001). Similarly, SCZ displayed a causal relationship with all glioma (OR = 1.09, 95%CI = 1.04-1.14, P = 3.47 × 10-4) and non-GBM glioma (OR = 1.14, 95%CI = 1.08-1.21, P = 7.37 × 10-6). Besides, insomnia was correlated with the risk of non-GBM glioma (OR = 1.49, 95%CI = 1.03-2.17, P = 0.036). The ADHD/SCZ/Insomnia associated DEGs of glioma patients were enriched in neurotransmitter signaling pathway, immune reaction, adhesion, invasion, and metastasis, regulating the pluripotency of stem cells, metabolism of glycan, lipid and amino acids. LIMITATIONS: The extensibility of the conclusion to other ethnic and geographical groups should be careful because the data used in this study come from European. CONCLUSIONS: This study provides genetic evidence to suggest ADHD, SCZ, and insomnia as causes of glioma and common pathogenic process between ADHD/Insomnia/SCZ and glioma.
RESUMO
In mammals, promyelocytic leukemia (PML) protein, also named as TRIM19, is the key component of nuclear membrane-less sub structures PML nuclear bodies (PML-NB) or nuclear domains 10 (ND10). PML-NBs are dynamic foci that consist of numerous permanently or transiently associated proteins. The mammalian PMLs are involved in the regulation of various cellular pathways, including apoptosis, intrinsic and innate antiviral immunity, cell cycle, DNA damage, senescence and etc. Nevertheless, little is known about the role of chicken PML (chPML). In this study, chPML gene was cloned, and its several functions were characterized. We found that chPML was widely expressed in different tissues of chickens, and showed different subcellular distribution pattern in DF-1 cells comparing with LMH and HD11 cells. Like human PML, chPML was identified to be SUMOylated. K463 is 1 critical SUMOylation site and 240RARRG244 is SUMO interaction motif (SIM) of chPML. Moreover, qPCR showed that chPML could not only up-regulate the expression of host innate immune factor IFN-ß and its downstream ISGs, but also antigen presentation-related factors including class II transactivator (CIITA) and MHC II DM beta 2 (DMB2). Notably, over-expression of chIFN-ß could promote the expression of endogenous chPML. All these provide novel insights into the function of chPML, and pave the way for further studying the roles of chPML in biological process and anti-infection function.
RESUMO
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Doenças do Sistema Nervoso , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/etiologia , SARS-CoV-2/metabolismo , AnimaisRESUMO
Solanum commersonii (2n = 2x = 24, 1EBN, Endosperm Balance Number), native to the southern regions of Brazil, Uruguay, and northeastern Argentina, is the first wild potato germplasm collected by botanists and exhibits a remarkable array of traits related to disease resistance and stress tolerance. In this study, we present a high-quality haplotype-resolved genome of S. commersonii. The two identified haplotypes demonstrate chromosome sizes of 706.48 and 711.55 Mb, respectively, with corresponding chromosome anchoring rates of 94.2 and 96.9%. Additionally, the contig N50 lengths are documented at 50.87 and 45.16 Mb. The gene annotation outcomes indicate that the haplotypes encompasses a gene count of 39 799 and 40 078, respectively. The genome contiguity, completeness, and accuracy assessments collectively indicate that the current assembly has produced a high-quality genome of S. commersonii. Evolutionary analysis revealed significant positive selection acting on certain disease resistance genes, stress response genes, and environmentally adaptive genes during the evolutionary process of S. commersonii. These genes may be related to the formation of diverse and superior germplasm resources in the wild potato species S. commersonii. Furthermore, we utilized a hybrid population of S. commersonii and S. verrucosum to conduct the mapping of potato freezing tolerance genes. By combining BSA-seq analysis with traditional QTL mapping, we successfully mapped the potato freezing tolerance genes to a specific region on Chr07, spanning 1.25 Mb, with a phenotypic contribution rate of 18.81%. In short, current research provides a haplotype-resolved reference genome of the diploid wild potato species S. commersonii and establishes a foundation for further cloning and unraveling the mechanisms underlying cold tolerance in potatoes.
RESUMO
The aim of this study was to investigate whether the damage to male offspring induced by cadmium (Cd) exposure during embryonic period leads to the apoptosis of ovarian granulosa cells (OGCs) in the next generation of female offspring, and whether this apoptosis in the offspring was due to paternal genetic effects. Pregnant Sprague-Dawley (SD) rats were exposed to CdCl2 (0, 0.5, 2.0, or 8.0 mg/kg) by gavage daily for 20 days to produce the filial 1 (F1) generation. F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was generated in the same way. No apoptotic bodies were observed in the OGCs of either the F2 or F3 generation as shown by electron microscopy, and a reduced OGC apoptosis rate (detected by flow cytometry) was observed in F2 OGCs from the Cd-exposed group. Moreover, the mRNA (qRT-PCR) levels of Bax and Bcl-2 and the protein (western blotting) level of pro-caspase-8 increased in the F2 generation (p < 0.05). The expression of apoptosis-related miRNAs (qRT-PCR) and methylation of apoptosis-related genes (determined via bisulfite-sequencing PCR) in OGCs were further determined. Compared with those of the controls, the expression patterns of microRNAs (miRNAs) in the F2 offspring were different in the Cd-exposed group. The miR-92a-2-5p expression levels were decreased in both the F2 and F3 generations (p < 0.05), while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, this study showed that the paternal genetic intergenerational effect of male Cd exposure during embryonic period induced apoptosis of OGCs in the offspring was weakened, and the transgenerational effect disappeared; nevertheless, intergenerational and transgenerational changes in apoptosis-related genes, epigenetic modifications, DNA methylation, and miRNAs were observed, and may be important for understanding the homeostatic mechanisms of the body to alleviate the intergenerational transmission of Cd-induced damage.
Assuntos
Apoptose , Cádmio , Células da Granulosa , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Animais , Feminino , Apoptose/efeitos dos fármacos , Masculino , Células da Granulosa/efeitos dos fármacos , Cádmio/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação de DNA/efeitos dos fármacos , Exposição Paterna/efeitos adversosRESUMO
Enhancing the exposure of metal active sites and maximizing metal atom utilization are critical challenges in heterogeneous catalysis. To solve these issues, heterogeneous catalysts are usually activated by chemicals. Herein, potassium chloride (KCl) was used as an activator to prepare cobalt-nitrogen co-doped (Co-Nx) hollow periodic mesoporous organosilica spheres (Co-Nx/HPMOs-KCl). Co-Nx/HPMOs-KCl showed outstanding catalytic activity for the selective oxidation of ethylbenzene to acetophenone, with a conversion of up to 94.0% for ethylbenzene and a high selectivity of 98.4% towards acetophenone. Additionally, Co-Nx/HPMOs-KCl maintained excellent catalytic performance for the oxidation of ethylbenzene after six cycles. The excellent performance of Co-Nx/HPMOs-KCl was attributed to the activation of KCl, which increased the specific surface area of the catalyst and thus facilitated the exposure of more metal active sites. After the removal of unstable metal species through further acid treatment, the remaining metal active sites were thus fully exposed and stably embedded in the framework of the hollow periodic mesoporous organosilica spheres (HMPOs). This work presents an efficient catalyst and offers new insights for the improvement of heterogeneous catalysts.
RESUMO
Music is integrated into daily life when listening to it, playing it, and singing, uniquely modulating brain activity. Functional near-infrared spectroscopy (fNIRS), celebrated for its ecological validity, has been used to elucidate this music-brain interaction. This scoping review synthesizes 22 empirical studies using fNIRS to explore the intricate relationship between music and brain function. This synthesis of existing evidence reveals that diverse musical activities, such as listening to music, singing, and playing instruments, evoke unique brain responses influenced by individual traits and musical attributes. A further analysis identifies five key themes, including the effect of passive and active music experiences on relevant human brain areas, lateralization in music perception, individual variations in neural responses, neural synchronization in musical performance, and new insights fNIRS has revealed in these lines of research. While this review highlights the limited focus on specific brain regions and the lack of comparative analyses between musicians and non-musicians, it emphasizes the need for future research to investigate the complex interplay between music and the human brain.
RESUMO
This study aimed to investigate the efficacy of biochar, produced from different agricultural residues varying in lignin and cellulose content and subjected to different pyrolysis temperatures, in removing cadmium ions (Cd (II)) from an aqueous solution. This removal process is crucial for protecting human health and the environment. Specifically, the study focused on the adsorption behaviors of Cd (II) by the biochars made from rice husk biochar (RHB), maize straw biochar (MSB), peanut shell biochar (PSB), cottonseed shell biochar (CHB), and mulberry leaf biochar (MLB), which were prepared at 300 °C and 600 °C. The results indicated that the type of agricultural residue used to produce biochar significantly influenced the adsorption of Cd (II). Notably, mulberry leaf biochar prepared at 300 °C (MLB-300) demonstrated the highest adsorption efficiency, achieving a maximum adsorption capacity of 42.2 mg g-1. Batch adsorption experiments assessed the impact of various factors, including system pH, NO3- concentration, and adsorption duration. The adsorption kinetics were better described by the pseudo-second-order model than the pseudo-first-order model. Moreover, the study found that the lignin content of the biochar plays a major role in determining the adsorption capacity. The surface characteristics of biochar, influenced by the types of agricultural residues and preparation temperature, directly impact its adsorption mechanism and capacity. While biochar produced at 300 °C showed optimal Cd(II) adsorption, those processed at 600 °C were less effective, likely due to the loss of functional groups at higher temperatures.
Assuntos
Cádmio , Carvão Vegetal , Carvão Vegetal/química , Cádmio/análise , Cádmio/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Agricultura/métodos , Cinética , Concentração de Íons de Hidrogênio , Água/química , Purificação da Água/métodos , Temperatura , SoluçõesRESUMO
Daylily (Hemerocallis citrina) is a perennial herb of the genus Hemerocallis of Liliaceae. It is also an economically important crop and is widely cultivated. Daylily has nutritional, medicinal and ornamental values. The research literature shows that daylily is a high-quality food raw material rich in soluble sugars, ascorbic acid, flavonoids, dietary fiber, carotenoids, mineral elements, polyphenols and other nutrients, which are effective in clearing heat and diuresis, resolving bruises and stopping bleeding, strengthening the stomach and brain, and reducing serum cholesterol levels. This article reviews the main nutrients of daylily and summarizes the drying process of daylily. In addition, due to the existence of active ingredients, daylily also has a variety of biological activities that are beneficial to human health. This article also highlights the nutritional quality of daylily, the research progress of dried vegetable rehydration technology and dried daylily. In the end, the undeveloped molecular mechanism and functional research status of daylily worldwide are introduced in order to provide reference for the nutritional quality research and dried processing industry of daylily.
Assuntos
Valor Nutritivo , Humanos , Verduras/química , Flores/químicaRESUMO
Background: The occurrence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. The link between serum remnant cholesterol (RC) to high-density lipoprotein cholesterol (HDL-C) ratio and NAFLD remains unclear. Therefore, we sought to clarify the relationship between the RC/HDL-C ratio and the NAFLD. Methods: Data for our cross-sectional study came from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) with 2,269 participants. Associations between RC/HDL-C levels and the prevalence of NAFLD and hepatic fibrosis were evaluated using adjusted multivariate logistic regression analyses. A generalized additive model examined the non-linear relationship between RC/HDL-C and the probability of developing NAFLD. Results: Among 2,269 participants, 893 (39.36%) were diagnosed with NAFLD. In each of the three models, RC/HDL-C and NAFLD had a strong positive statistical relationship: model 1 (OR = 9.294, 95%CI: 6.785, 12.731), model 2 (OR = 7.450, 95%CI: 5.401, 10.278), and model 3 (OR = 2.734, 95%CI: 1.895, 3.944). In addition, the subgroup analysis by gender and BMI suggested that RC/HDL-C showed a positive correlation with NAFLD. The RC/HDL-C ratio was positively correlated with the degree of liver steatosis. There was an inverted U-shaped connection between the prevalence of NAFLD and RC/HDL-C, with an inflection point of 0.619 for all participants and 0.690 for men. Receiver operating characteristic (ROC) analysis showed that the predictive value of RC/HDL-C for NAFLD (area under the curve: 0.7139; 95%CI: 0.6923, 0.7354; P < 0.001), was better than traditional lipid parameters. Conclusion: Increased RC/HDL-C levels are independently associated with an increased risk of NAFLD and the severity of liver steatosis in the American population. In addition, the RC/HDL-C ratio can be used as a simple and effective non-invasive biomarker to identify individuals with a high risk of NAFLD.
RESUMO
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
RESUMO
We aimed to identify HD-Zip (homologous domain leucine zipper) family genes based on the complete Sophora alopecuroides genome sequence. Eighty-six Sophora alopecuroides HD-Zip family (SaHDZ) genes were identified and categorized into four subclasses using phylogenetic analysis. Chromosome localization analysis revealed that these genes were distributed across 18 chromosomes. Gene structure and conserved motif analysis showed high similarity among members of the SaHDZ genes. Prediction analysis revealed 71 cis-acting elements in SaHDZ genes. Transcriptome and quantitative real-time polymerase chain reaction analyses showed that under salt stress, SaHDZ responded positively in S. alopecuroides, and that SaHDZ22 was significantly upregulated afterward. Functional verification experiments revealed that SaHDZ22 overexpression increased the tolerance of Arabidopsis to salt and osmotic stress. Combined with cis-acting element prediction and expression level analysis, HD-Zip family transcription factors may be involved in regulating the balance between plant growth and stress resistance under salt stress by modulating the expression of auxin and abscisic acid signaling pathway genes. The Sophora alopecuroides adenylate kinase protein (SaAKI) and S. alopecuroides tetrapeptide-like repeat protein (SaTPR; pCAMBIA1300-SaTPR-cLUC) expression levels were consistent with those of SaHDZ22, indicating that SaHDZ22 may coordinate with SaAKI and SaTPR to regulate plant salt tolerance. These results lay a foundation in understanding the salt stress response mechanisms of S. alopecuroides and provide a reference for future studies oriented toward exploring plant stress resistance.
RESUMO
PURPOSE: The aim of this study was to explore whether MAF bZIP transcription factor B (MAFB) might alleviate ulcerative colitis (UC) in dextran sulfate sodium (DSS)-induced mice and LPS-induced IEC-6 cells. METHODS: UC in vivo and in vitro model was established by using DSS and LPS, respectively. The mice body weight and disease activity index (DAI) score were recorded daily, and colon length was measured. Moreover, the permeability was evaluated utilizing a fluorescein isothiocyanate dextran (FITC-Dextran) probe. Histopathological changes of DSS-induced colitis mice was assessed utilizing H&E staining. Next, qRT-PCR was performed to detect IL-1ß, IL-6, TNF-α, and IL-10 level in in vivo and in vitro. Furthermore, the level of MDA, SOD, CAT, and GSH were evaluated in colon tissues. Besides, the expressions of tight junction proteins and NF-κB pathway relative proteins were examined in colitis mice and IEC-6 cells using western blot, immunohistochemistry and immunofluorescence. RESULTS: MAFB level was downregulated in DSS-induced colitis mice. Moreover, the upregulation of MAFB protected mice from DSS-induced colitis by suppressing DSS-induced inflammation, oxidative stress, and intestinal barrier impairment. We also demonstrated that the upregulation of MAFB inactivated NF-κB pathway in DSS-caused colitis mice. Subsequently, we observed that MAFB upregulation could inhibit LPS-caused epithelial barrier impairment and inflammation in IEC-6 cells. Additionally, MAFB overexpression could suppress the activation of NF-κB pathway in IEC-6 cells. CONCLUSION: The upregulation of MAFB could protect against UC via the suppression of inflammation and the intestinal barrier impairment through inhibiting the NF-κB pathway.