Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1394302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881658

RESUMO

Introduction: The identification of microbe-drug associations can greatly facilitate drug research and development. Traditional methods for screening microbe-drug associations are time-consuming, manpower-intensive, and costly to conduct, so computational methods are a good alternative. However, most of them ignore the combination of abundant sequence, structural information, and microbe-drug network topology. Methods: In this study, we developed a computational framework based on a modified graph attention variational autoencoder (MGAVAEMDA) to infer potential microbedrug associations by combining biological information with the variational autoencoder. In MGAVAEMDA, we first used multiple databases, which include microbial sequences, drug structures, and microbe-drug association databases, to establish two comprehensive feature matrices of microbes and drugs after multiple similarity computations, fusion, smoothing, and thresholding. Then, we employed a combination of variational autoencoder and graph attention to extract low-dimensional feature representations of microbes and drugs. Finally, the lowdimensional feature representation and graphical adjacency matrix were input into the random forest classifier to obtain the microbe-drug association score to identify the potential microbe-drug association. Moreover, in order to correct the model complexity and redundant calculation to improve efficiency, we introduced a modified graph convolutional neural network embedded into the variational autoencoder for computing low dimensional features. Results: The experiment results demonstrate that the prediction performance of MGAVAEMDA is better than the five state-of-the-art methods. For the major measurements (AUC =0.9357, AUPR =0.9378), the relative improvements of MGAVAEMDA compared to the suboptimal methods are 1.76 and 1.47%, respectively. Discussion: We conducted case studies on two drugs and found that more than 85% of the predicted associations have been reported in PubMed. The comprehensive experimental results validated the reliability of our models in accurately inferring potential microbe-drug associations.

2.
PLoS One ; 18(1): e0278817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595551

RESUMO

With the development of medical science, long noncoding RNA (lncRNA), originally considered as a noise gene, has been found to participate in a variety of biological activities. Several recent studies have shown the involvement of lncRNA in various human diseases, such as gastric cancer, prostate cancer, lung cancer, and so forth. However, obtaining lncRNA-disease relationship only through biological experiments not only costs manpower and material resources but also gains little. Therefore, developing effective computational models for predicting lncRNA-disease association relationship is extremely important. This study aimed to propose an lncRNA-disease association prediction model based on the weight matrix and projection score (LDAP-WMPS). The model used the relatively perfect lncRNA-miRNA relationship data and miRNA-disease relationship data to predict the lncRNA-disease relationship. The integrated lncRNA similarity matrix and the integrated disease similarity matrix were established by fusing various methods to calculate the similarity between lncRNA and disease. This study improved the existing weight algorithm, applied it to the lncRNA-miRNA-disease triple network, and thus proposed a new lncRNA-disease weight matrix calculation method. Combined with the improved projection algorithm, the lncRNA-miRNA relationship and miRNA-disease relationship were used to predict the lncRNA-disease relationship. The simulation results showed that under the Leave-One-Out-Cross-Validation framework, the area under the receiver operating characteristic curve of LDAP-WMPS could reach 0.8822, which was better than the latest result. Taking adenocarcinoma and colorectal cancer as examples, the LDAP-WMPS model was found to effectively infer the lncRNA-disease relationship. The simulation results showed good prediction performance of the LDAP-WMPS model, which was an important supplement to the research of lncRNA-disease association prediction without lncRNA-disease relationship data.


Assuntos
MicroRNAs , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , Biologia Computacional/métodos , MicroRNAs/genética , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA