Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Cell Mol Immunol ; 21(5): 479-494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443447

RESUMO

Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one ß-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 ß-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many ß-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.


Assuntos
Amiloide , Proteína gp120 do Envelope de HIV , Infecções por HIV , HIV-1 , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Humanos , Amiloide/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Proteínas Amiloidogênicas/metabolismo , Vírion/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/farmacologia
2.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Humanos , Camundongos , Masculino , Regulação para Cima/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais/efeitos dos fármacos
4.
Cell Death Discov ; 9(1): 405, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907575

RESUMO

Rituximab has been incorporated into the standard treatment regimen for diffuse large B-cell lymphoma (DLBCL), and induces the death of tumor cells via complement-dependent cytotoxicity (CDC). Unfortunately, the resistance of DLBCL cells to Rituximab limits its clinical usefulness. It remains unclear whether the complement system is related to Rituximab resistance in DLBCL. A Rituximab-resistant DLBCL cell line (Farage/R) was generated under the stress of Rituximab. Constituent proteins of the complement system in wild-type Farage cells (Farage/S) and Farage/R cells were analyzed by qPCR, western blotting, and immunofluorescence. In vitro and in vivo knockdown and overexpression studies confirmed that the complement 1Q subcomponent A chain (C1qA) was a regulator of Rituximab resistance. Finally, the mechanism by which C1qA is regulated by m6A methylation was explored. The reader and writer were identified by pull-down studies and RIP-qPCR. Activity of the complement system in Farage/R cells was suppressed. C1qA expression was reduced in Farage/R cells due to post-transcriptional regulation. Furthermore, in vitro and in vivo results showed that C1qA knockdown in Farage/S cells decreased their sensitivity to Rituximab, and C1qA overexpression in Farage/R cells attenuated the Rituximab resistance of those cells. Moreover, METTL3 and YTHDF2 were proven to be the reader and writer for m6A methylation of C1qA, respectively. Knockdown of METTL3 or YTHDF2 in Farage/R cells up-regulated C1qA expression and reduced their resistance to Rituximab. In summary, the aberrant downregulation of C1qA was related to Rituximab resistance in DLBCL cells, and C1qA was found to be regulated by METTL3- and YTHDF2-mediated m6A methylation. Enhancing the response of the complement system via regulation of C1qA might be an effective strategy for inhibiting Rituximab resistance in DLBCL.

5.
Burns ; 49(8): 1958-1968, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821288

RESUMO

INTRODUCTION: Although several studies have investigated models of nerve electrical injury, only a few have focused on electrical injury to peripheral nerves, which is a common and intractable problem in clinical practice. Here, we describe an experimental rat model of peripheral nerve electrical injury and its assessment. METHODS: A total of 120 animals were subjected to short-term corrective electrostimulation (50 Hz, 1-s duration) applied at varying voltages (control, 65, 75, 100, 125, and 150 V) to the exposed left sciatic nerve. Behavioural testing, electrophysiological measurements, and histopathological observation of the sciatic nerve were conducted at 1-, 2-, 4-, and 8-w follow-ups. RESULTS: No functional defects were noted in the groups that received 65-V stimulation at any time point. Sciatic nerve functional defects were found after 2 w in animals that received 75-V stimulation, but function returned to normal after 4 w. In animals that received 100-V and 125-V stimulation, functional defects were observed at 4 w, but had partially recovered by 8 w. Conversely, animals that received 150-V stimulation did not show recovery after 8 w. CONCLUSION: We presented a model of peripheral nerve electrical injury that avoided the interference of various external factors, such as current instability, compression of the surrounding tissues, and altered blood supply. The model allowed quantitation and ranking of the nerve injury into four degrees. It facilitated effective evaluation of nerve function impairment and repair after injury. It can be used post-surgically to evaluate peripheral nerve impairment and reconstruction and enables translational interpretation of results, which may improve understanding of the mechanisms underlying the progression of peripheral nerve electrical injury.


Assuntos
Queimaduras , Traumatismos por Eletricidade , Traumatismos dos Nervos Periféricos , Ratos , Animais , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Regeneração Nervosa/fisiologia
6.
Ren Fail ; 45(1): 2237124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482915

RESUMO

BACKGROUND: The treatment of refractory nephrotic syndrome (RNS) is full of challenges and the role of rituximab (RTX) is not well-established, thus this study aims to demonstrate the role of RTX in RNS. METHODS: This was a multicenter retrospective study of all adult patients receiving RTX for RNS. Patients enrolled were divided into two groups according to pathological pattern: 20 patients as a group of podocytopathy (including minimal change disease [MCD] and focal and segmental glomerulosclerosis [FSGS]), and 26 patients as membranous nephropathy (MN) group. The remission rate, relapse rate, adverse effects, and predictors of remission were analyzed. RESULTS: A total of 75 patients received RTX for RNS and 48 were available for analysis after exclusion criteria. No significant difference in the remission rate at 6 or 12 months was observed between the MCD/FSGS and MN cases (p > 0.05). The median duration of the first complete remission (CR) was 1 month in the podocytopathy group and 12.5 months in the MN group. Three relapses were associated with infection as the ultimate outcome, and 6 out of 48 remained refractory representing a response rate of 87.5% in RNS. Clinical predictors of cumulative CR were estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and mean arterial pressure (MAP) ≤103 mmHg at the beginning of therapy in patients with MN. No serious adverse effects were reported. CONCLUSIONS: RTX appears to be effective in RNS across various clinical and pathological subtypes, exhibiting a low relapse rate and minimal significant side effects in the majority of patients.


Assuntos
Glomerulonefrite Membranosa , Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Humanos , Adulto , Rituximab/efeitos adversos , Estudos Retrospectivos , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Síndrome Nefrótica/tratamento farmacológico , Resultado do Tratamento , Nefrose Lipoide/tratamento farmacológico , Glomerulonefrite Membranosa/tratamento farmacológico , Recidiva , Doença Crônica , Imunossupressores/uso terapêutico
7.
Cell Death Dis ; 14(4): 253, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029114

RESUMO

Long-term follow-up data indicates that 1/4 patients with acute kidney injury (AKI) will develop to chronic kidney disease (CKD). Our previous studies have demonstrated that enhancer of zeste homolog 2 (EZH2) played an important role in AKI and CKD. However, the role and mechanisms of EZH2 in AKI-to-CKD transition are still unclear. Here, we demonstrated EZH2 and H3K27me3 highly upregulated in kidney from patients with ANCA-associated glomerulonephritis, and expressed positively with fibrotic lesion and negatively with renal function. Conditional EZH2 deletion or pharmacological inhibition with 3-DZNeP significantly improved renal function and attenuated pathological lesion in ischemia/reperfusion (I/R) or folic acid (FA) mice models (two models of AKI-to-CKD transition). Mechanistically, we used CUT & Tag technology to verify that EZH2 binding to the PTEN promoter and regulating its transcription, thus regulating its downstream signaling pathways. Genetic or pharmacological depletion of EZH2 upregulated PTEN expression and suppressed the phosphorylation of EGFR and its downstream signaling ERK1/2 and STAT3, consequently alleviating the partial epithelial-mesenchymal transition (EMT), G2/M arrest, and the aberrant secretion of profibrogenic and proinflammatory factors in vivo and vitro experiments. In addition, EZH2 promoted the EMT program induced loss of renal tubular epithelial cell transporters (OAT1, ATPase, and AQP1), and blockade of EZH2 prevented it. We further co-cultured macrophages with the medium of human renal tubular epithelial cells treated with H2O2 and found macrophages transferred to M2 phenotype, and EZH2 could regulate M2 macrophage polarization through STAT6 and PI3K/AKT pathways. These results were further verified in two mice models. Thus, targeted inhibition of EZH2 might be a novel therapy for ameliorating renal fibrosis after acute kidney injury by counteracting partial EMT and blockade of M2 macrophage polarization.


Assuntos
Injúria Renal Aguda , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Macrófagos , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Peróxido de Hidrogênio/metabolismo , Rim/patologia , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Renal Crônica/patologia
8.
Front Immunol ; 14: 1137332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911746

RESUMO

Background: Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods: We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-ß1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results: We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-ß1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-ß1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions: We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.


Assuntos
Intervenção Coronária Percutânea , Fibrose Peritoneal , Animais , Humanos , Camundongos , Soluções para Diálise/farmacologia , Transição Epitelial-Mesenquimal , Receptores ErbB , Glucose/farmacologia , Histona Desacetilases , Interleucina-4/farmacologia , Macrófagos/metabolismo , Fibrose Peritoneal/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
Kidney Int ; 103(3): 544-564, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581018

RESUMO

The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-ß1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.


Assuntos
Transição Epitelial-Mesenquimal , Insuficiência Renal Crônica , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Receptores ErbB , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
10.
Front Nutr ; 9: 933745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36562038

RESUMO

Background and aim: Protein-energy wasting (PEW) is critically associated with the reduced quality of life and poor prognosis of hemodialysis patients. However, the diagnosis criteria of PEW are complex, characterized by difficulty in estimating dietary intake and assessing muscle mass loss objectively. We performed a cross-sectional study in hemodialysis patients to propose a novel PEW prediction model. Materials and methods: A total of 380 patients who underwent maintenance hemodialysis were enrolled in this cross-sectional study. The data were analyzed with univariate and multivariable logistic regression to identify influencing factors of PEW. The PEW prediction model was presented as a nomogram by using the results of logistic regression. Furthermore, receiver operating characteristic (ROC) and decision curve analysis (DCA) were used to test the prediction and discrimination ability of the novel model. Results: Binary logistic regression was used to identify four independent influencing factors, namely, sex (P = 0.03), triglycerides (P = 0.009), vitamin D (P = 0.029), and NT-proBNP (P = 0.029). The nomogram was applied to display the value of each influencing factor contributed to PEW. Then, we built a novel prediction model of PEW (model 3) by combining these four independent variables with part of the International Society of Renal Nutrition and Metabolism (ISRNM) diagnostic criteria including albumin, total cholesterol, and BMI, while the ISRNM diagnostic criteria served as model 1 and model 2. ROC analysis of model 3 showed that the area under the curve was 0.851 (95%CI: 0.799-0.904), and there was no significant difference between model 3 and model 1 or model 2 (all P > 0.05). DCA revealed that the novel prediction model resulted in clinical net benefit as well as the other two models. Conclusion: In this research, we proposed a novel PEW prediction model, which could effectively identify PEW in hemodialysis patients and was more convenient and objective than traditional diagnostic criteria.

11.
Entropy (Basel) ; 24(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36141133

RESUMO

Various security threats are encountered when keys are transmitted in public channels. In this paper, we propose an image encryption algorithm based on complex network scrambling and multi-directional diffusion. Combining the idea of public key cryptography, the RSA algorithm is used to encrypt the key related to plaintext. The algorithm consists of three stages: key generation stage, complex network scrambling stage, and multi-directional diffusion stage. Firstly, during the key generation phase, SHA-512 and the original image are used to generate plaintext-related information, which is then converted to plaintext-related key through transformation mapping. Secondly, in the complex network scrambling stage, the chaotic random matrix establishes the node relationships in the complex network, which is then used to construct an image model based on the complex network, and then combines pixel-level and block-level methods to scramble images. Finally, in the multi-directional diffusion stage, the multi-directional diffusion method is used to perform forward diffusion, middle spiral diffusion, and backward diffusion on the image in turn to obtain the final ciphertext image. The experimental results show that our encryption algorithm has a large keyspace, the encrypted image has strong randomness and robustness, and can effectively resist brute force attack, statistical attack, and differential attack.

12.
Front Public Health ; 10: 927527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910890

RESUMO

Background: Sepsis is a highly life-threatening heterogeneous syndrome and a global health burden. Studies have shown that many genetic variants could influence the risk of sepsis. Long non-coding RNA lincRNA-NR_024015 may participate in functional alteration of endothelial cell via vascular endothelial growth factor (VEGF) signaling, whereas its relevance between the lincRNA-NR_024015 polymorphism and sepsis susceptibility is still unclear. Methods: 474 sepsis patients and 678 healthy controls were enrolled from a southern Chinese child population in the present study. The polymorphism of rs8506 in lincRNA-NR_024015 was determined using Taqman methodology. Results: Overall, a significant association was found between rs8506 polymorphism and the risk of sepsis disease (TT vs. CC/CT: adjusted OR = 1.751, 95%CI = 1.024-2.993, P = 0.0406). In the stratified analysis, the results suggested that the carriers of TT genotypes had a significantly increased sepsis risk among the children aged 12-60 months, females, early-stage sepsis and survivors (TT vs. CC/CT: ORage = 2.413; ORfemale = 2.868; ORsepsis = 2.533; ORsurvivor = 1.822; adjusted for age and gender, P < 0.05, respectively). Conclusion: Our study indicated that lincRNA-NR_024015 rs8506 TT genotype might contribute to the risk of sepsis in a southern Chinese child population. Future research is required to elucidate the possible immunoregulatory mechanisms of this association and advance the development of novel biomarkers in sepsis.


Assuntos
RNA Longo não Codificante , Sepse , Criança , China/epidemiologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Sepse/epidemiologia , Sepse/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Entropy (Basel) ; 24(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885123

RESUMO

In this paper, a hyperchaotic four-dimensional fractional discrete Hopfield neural network system (4D-FDHNN) with four positive Lyapunov exponents is proposed. Firstly, the chaotic dynamics' characteristics of the system are verified by analyzing and comparing the iterative trajectory diagram, phase diagram, attractor diagram, 0-1 test, sample entropy, and Lyapunov exponent. Furthermore, a novel image encryption scheme is designed to use the chaotic system as a pseudo-random number generator. In the scenario, the confusion phase using the fractal idea proposes a fractal-like model scrambling method, effectively enhancing the complexity and security of the confusion. For the advanced diffusion phase, we proposed a kind of Hilbert dynamic random diffusion method, synchronously changing the size and location of the pixel values, which improves the efficiency of the encryption algorithm. Finally, simulation results and security analysis experiments show that the proposed encryption algorithm has good efficiency and high security, and can resist common types of attacks.

14.
Entropy (Basel) ; 24(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885124

RESUMO

Today, with the rapid development of the Internet, improving image security becomes more and more important. To improve image encryption efficiency, a novel region of interest (ROI) encryption algorithm based on a chaotic system was proposed. First, a new 1D eλ-cos-cot (1D-ECC) with better chaotic performance than the traditional chaotic system is proposed. Second, the chaotic system is used to generate a plaintext-relate keystream based on the label information of a medical image DICOM (Digital Imaging and Communications in Medicine) file, the medical image is segmented using an adaptive threshold, and the segmented region of interest is encrypted. The encryption process is divided into two stages: scrambling and diffusion. In the scrambling stage, helical scanning and index scrambling are combined to scramble. In the diffusion stage, two-dimensional bi-directional diffusion is adopted, that is, the image is bi-directionally diffused row by column to make image security better. The algorithm offers good encryption speed and security performance, according to simulation results and security analysis.

15.
Front Immunol ; 13: 899140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784347

RESUMO

Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-ß/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-ß/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.


Assuntos
Fibrose Peritoneal , Clorexidina/análogos & derivados , Soluções para Diálise , Desacetilase 6 de Histona , Humanos , Interleucina-4 , Macrófagos/metabolismo , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta/metabolismo
16.
J Pathol ; 258(2): 164-178, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792675

RESUMO

The catalytic subunit of polycomb repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2), has been reported to be involved in angiogenesis in some tumors and autoimmune diseases. However, the mechanisms by which EZH2 regulates peritoneal angiogenesis remain unclear. We detected the expression of EZH2 in clinical samples and the peritoneal tissue of a mouse peritoneal fibrosis model induced by chlorhexidine gluconate (CG). In addition, we further investigated the mechanisms by which inhibition of EZH2 by 3-deazaneplanocin A (3-DZNeP) alleviated the CG-induced peritoneal fibrosis mouse model in vivo and 3-DZNeP or EZH2 siRNA treatment in cultured human peritoneal mesothelial cells (HPMCs) and human umbilical vein endothelial cells (HUVECs). The expression of EZH2 in the peritoneum of long-term peritoneal dialysis (PD) patients and the CG-induced peritoneal fibrosis mouse model was remarkably increased and this was positively associated with higher expression of vascular markers (CD31, CD34, VEGF, p-VEGFR2). Peritoneal injection of 3-DZNeP attenuated angiogenesis in the peritoneum of CG-injured mice; improved peritoneal membrane function; and decreased phosphorylation of STAT3, ERK1/2, and activation of Wnt1/ß-catenin. In in vitro experiments, we demonstrated that inhibition of EZH2 by 3-DZNeP or EZH2 siRNA decreased tube formation and the migratory ability of HUVECs via two pathways: the Wnt1/ß-catenin pathway and the IL-6/STAT3 pathway. Suppression of the Wnt1/ß-catenin pathway and the IL-6/STAT3 pathway subsequently reduced VEGF production in HPMCs. Using specific inhibitors of VEGFR2, ERK1/2, and HIF-1α, we found that a VEGFR2/ERK1/2/HIF-1α axis existed and contributed to angiogenesis in vitro. Moreover, phosphorylation of VEGFR2 and activation of the ERK1/2 pathway and HIF-1α in HUVECs could be suppressed by inhibition of EZH2. Taken together, the results of this study suggest that EZH2 may be a novel target for preventing peritoneal angiogenesis in PD patients. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrose Peritoneal , Peritônio , Animais , Proteína Potenciadora do Homólogo 2 de Zeste , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Neovascularização Patológica/patologia , Fibrose Peritoneal/metabolismo , Peritônio/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
17.
Front Cardiovasc Med ; 9: 760982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571208

RESUMO

Background: Kawasaki disease (KD) is an acute, self-limited febrile illness of unknown cause. And it predominantly affects children <5 years and the main complication is coronary artery lesion (CAL). Studies demonstrated that vascular endothelial cells (VECs) played a very important role in the CAL of KD. VE-cad encoded by CDH5 may exert a relevant role in endothelial cell biology through controlling the cohesion of the intercellular junctions. The pathogenesis of KD remains unclear and genetic factors may increase susceptibility of KD. However, the relationship between CDH5 polymorphisms and KD susceptibility has not been reported before. The present study is aimed at investigating whether the rs7404339 polymorphism in CDH5 is associated with KD susceptibility and CAL in a southern Chinese child population. Methods and Results: We recruited 1,335 patients with KD and 1,669 healthy children. Each participant had supplied 2 mL of fresh blood in the clinical biologic bank at our hospital for other studies. Multiplex PCR is used to assess the genotypes of rs7404339 polymorphism in CDH5. According to the results, we found significant correlated relationship between rs7404339 polymorphism in CDH5 and KD susceptibility [AA vs. GG: adjusted odds ratio (OR) = 1.43, 95% confidence interval (CI) = 1.00-2.05; p = 0.0493; recessive model: adjusted OR = 1.44, 95% CI = 1.01-2.06, P = 0.0431]. In further stratified analysis, we found that children younger than 60 months (adjusted OR = 1.46, 95% CI = 1.01-2.10; p = 0.0424) and male (adjusted OR = 1.70, 95% CI = 1.09-2.65; p = 0.0203) with the rs7404339 AA genotype in CDH5 had a higher risk of KD than carriers of the GA/GG genotype. Furthermore, stratification analysis revealed that patients with the rs7404339 AA genotype exhibited the significantly higher onset risk for CAL than carriers of the GA/GG genotype (adjusted age and gender odds ratio = 1.56, 95% CI = 1.01-2.41; P = 0.0433). Conclusion: Our results showed that rs7404339 AA genotype in CDH5 is significant associated with KD susceptibility. And children younger than 60 months and male with the rs7404339 AA genotype had a higher risk of KD than carriers with the GA/GG genotype. Furthermore, patients with the rs7404339 AA genotype exhibited a significantly higher risk of CAL complication than carriers of the GA/GG genotype.

18.
Front Pharmacol ; 13: 885527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559246

RESUMO

Methylation can occur in both histones and non-histones. Key lysine and arginine methyltransferases under investigation for renal disease treatment include enhancer of zeste homolog 2 (EZH2), G9a, disruptor of telomeric silencing 1-like protein (DOT1L), and protein arginine methyltransferases (PRMT) 1 and 5. Recent studies have shown that methyltransferases expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury(AKI), obstructive nephropathy, diabetic nephropathy and lupus nephritis. The inhibition of most methyltransferases can attenuate kidney injury, while the role of methyltransferase in different animal models remains controversial. In this article, we summarize the role and mechanism of lysine methyltransferase and arginine methyltransferase in various kidney diseases and highlight methyltransferase as a potential therapeutic target for kidney diseases.

19.
Front Immunol ; 13: 827457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386697

RESUMO

Urothelial carcinoma of the bladder (UCB) is a major type of bladder cancer with a distinct tumor microenvironment (TME). Although neutrophils are the main component of myeloid cells in the TME, the clinical significance and function of the neutrophils remain unclear in UCB. Here, we observed CD66b+ neutrophils were predominantly enriched in the stroma of UCB tissues and their levels emerged as an independent prognostic factor for overall survival (P = 0.006, n = 237), and were positively associated with age (P = 0.033), tumor stage (P < 0.0001), nodal metastasis (P = 0.045), and histological grade (P < 0.0001). Furthermore, we found that CD66b+ neutrophils were frequently co-localized with CD4+ T cells (R=0.35, P = 0.0067), CD8+ T cells (R=0.52, P<0.0001) and Cleaved Caspase-3+ apoptosis cells (R=0.44, P = 0.0007) in the stroma of UCB tissue. In addition, better effects of T cells on patients' survival were markedly reduced by neutrophils and T cells co-infiltration. Moreover, we confirmed bladder tumor cell supernatant treated neutrophils suppressed T cell proliferation and activation, and promoted T cell apoptosis through GM-CSF induced PD-L1 in vitro. The expression of PD-L1 by neutrophils was also detected in fresh UCB tissues by using flow cytometric analysis. These data suggested that stromal CD66b+ neutrophils may potentially represent a reliable marker of poor prognosis for UCB patients, and neutrophils might play an immunosuppressive role on T cell immunity partially via the expression of PD-L1.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Humanos , Neutrófilos/patologia , Prognóstico , Microambiente Tumoral , Bexiga Urinária
20.
Exp Ther Med ; 23(4): 284, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35317437

RESUMO

Angiogenesis is vital in tissue engineering and the size of the capillary lumen diameter directly affects vascular function. Therefore, the involvement of the pH in the regulation of the capillary lumen diameter was investigated in the present study. The cytosolic pH of different pH medium groups was measured using flow cytometry. Bromodeoxyuridine staining and wound-healing assays were performed to detect cell proliferation and migration, respectively. The expression of angiogenesis-related genes was detected using reverse transcription-quantitative PCR. In addition, cell tube formation under different pH conditions was assessed using a tube formation assay and a 3D Matrigel® model. The results indicated that a change in the pH value of the culture medium affected the cytosolic pH of the endothelial cells, which then led to a change in vascular diameter. When the medium's pH ranged from 7.4 to 7.6, the diameter of the lumen formed in the Matrigel was suitable for capillary formation in tissue engineering. The present results revealed an important role for the pH in the process of capillary formation and provided insight for pH regulation during endothelial cell tube formation and angiogenesis in tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA