Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
JAMA Netw Open ; 7(9): e2435431, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39320890

RESUMO

Importance: Previous studies have identified mutations in SARS-CoV-2 strains that confer resistance to nirmatrelvir, yet how often this resistance arises and its association with posttreatment virologic rebound is not well understood. Objective: To examine the prevalence of emergent antiviral resistance after nirmatrelvir treatment and its association with virologic rebound. Design, Setting, and Participants: This cohort study enrolled outpatient adults with acute COVID-19 infection from May 2021 to October 2023. Participants were divided into those who received antiviral therapy and those who did not. The study was conducted at a multicenter health care system in Boston, Massachusetts. Exposure: Treatment regimen, including none, nirmatrelvir, and remdesivir. Main Outcomes and Measures: The primary outcome was emergent SARS-CoV-2 antiviral resistance, defined as the detection of antiviral resistance mutations, which were not present at baseline, were previously associated with decreased antiviral efficacy, and emerged during or after completion of a participant's treatment. Next-generation sequencing was used to detect low frequency mutations down to 1% of the total viral population. Results: Overall, 156 participants (114 female [73.1%]; median [IQR] age, 56 [38-69] years) were included. Compared with 63 untreated individuals, the 79 who received nirmatrelvir were older and more commonly immunosuppressed. After sequencing viral RNA from participants' anterior nasal swabs, nirmatrelvir resistance mutations were detected in 9 individuals who received nirmatrelvir (11.4%) compared with 2 of those who did not (3.2%) (P = .09). Among the individuals treated with nirmatrelvir, those who were immunosuppressed had the highest frequency of resistance emergence (5 of 22 [22.7%]), significantly greater than untreated individuals (2 of 63 [3.1%]) (P = .01). Similar rates of nirmatrelvir resistance were found in those who had virologic rebound (3 of 23 [13.0%]) vs those who did not (6 of 56 [10.7%]) (P = .86). Most of these mutations (10 of 11 [90.9%]) were detected at low frequencies (<20% of viral population) and reverted to the wild type at subsequent time points. Emerging remdesivir resistance mutations were only detected in immunosuppressed individuals (2 of 14 [14.3%]) but were similarly low frequency and transient. Global Initiative on Sharing All Influenza Data analysis showed no evidence of increased nirmatrelvir resistance in the United States after the authorization of nirmatrelvir. Conclusions and Relevance: In this cohort study of 156 participants, treatment-emergent nirmatrelvir resistance mutations were commonly detected, especially in individuals who were immunosuppressed. However, these mutations were generally present at low frequencies and were transient in nature, suggesting a low risk for the spread of nirmatrelvir resistance in the community with the current variants and drug usage patterns.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Tratamento Farmacológico da COVID-19 , Farmacorresistência Viral , SARS-CoV-2 , Humanos , Feminino , Masculino , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Pessoa de Meia-Idade , Alanina/análogos & derivados , Alanina/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Adulto , Mutação , COVID-19/epidemiologia , Idoso , Estudos de Coortes
2.
EClinicalMedicine ; 75: 102787, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252866

RESUMO

Background: It is unknown if early COVID-19 monoclonal antibody (mAb) therapy can reduce risk of Long COVID. The mAbs amubarvimab/romlusevimab were previously demonstrated to reduce risk of hospitalization/death by 79%. This study assessed the impact of amubarvimab/romlusevimab on late outcomes, including Long COVID. Methods: Non-hospitalized high-risk adults within 10 days of COVID-19 symptom onset enrolled in a randomized, double-blind, placebo-controlled phase 2/3 trial of amubarvimab/romlusevimab for COVID-19 treatment. Late symptoms, assessed using a participant-completed symptom diary, were a pre-specified exploratory endpoint. The primary outcome for this analysis was the composite of Long COVID by participant self-report (presence of COVID-19 symptoms as recorded in the diary at week 36) or hospitalization or death by week 36. Inverse probability weighting (IPW) was used to address incomplete outcome ascertainment, giving weighted risk ratios (wRR) comparing amubarvimab/romlusevimab to placebo. Findings: Participants received amubarvimab/romlusevimab (n = 390) or placebo (n = 390) between January and July 2021. Median age was 49 years, 52% were female, 18% Black/African American, 49% Hispanic/Latino, and 9% COVID-19-vaccinated at entry. At week 36, 103 (13%) had incomplete outcome ascertainment, and 66 (17%) on amubarvimab/romlusevimab and 92 (24%) on placebo met the primary outcome (wRR = 0.70, 95% confidence interval (CI) 0.53-0.93). The difference was driven by fewer hospitalizations/deaths with amubarvimab/romlusevimab (4%) than placebo (13%). Among 652 participants with available diary responses, 53 (16%) on amubarvimab/romlusevimab and 44 (14%) on placebo reported presence of Long COVID. Interpretation: Amubarvimab/romlusevimab treatment, while highly effective in preventing hospitalizations/deaths, did not reduce risk of Long COVID. Additional interventions are needed to prevent Long COVID. Funding: National Institute of Allergy and Infectious Diseases of the National Institutes of Health. Amubarvimab and romlusevimab supplied by Brii Biosciences.

3.
Pathog Immun ; 9(2): 79-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247686

RESUMO

Background: Anti-SARS-CoV-2 monoclonal antibodies (mAbs) have played a key role as an anti-viral against SARS-CoV-2, but there is a potential for resistance to develop. The interplay between host antibody responses and the development of monoclonal antibody (mAb) resistance is a critical area of investigation. In this study, we assessed host neutralizing antibody (nAb) responses against both ancestral virus and those with treatment-emergent E484K bamlanivimab resistance mutations. Methods: Study participants were enrolled in the ACTIV-2/Advancing Clinical Therapeutics Globally (ACTG) A5401 phase 2 randomized, placebo-controlled trial of bamlanivimab 700 mg mAb therapy (NCT04518410). Anterior nasal and nasopharyngeal swabs were collected for SARS-CoV-2 RNA testing and S gene next-generation sequencing to identify the E484K bamlanivimab resistance mutation. Serum nAb titers were assessed by pseudovirus neutralization assays. Results: Higher baseline (pre-treatment) nAb titers against either ancestral or E484K virus was associated with lower baseline viral load. Participants with emerging resistance had low levels of nAb titers against either ancestral or E484K nAb at the time of study entry. Participants with emergent E484K resistance developed significantly higher levels of E484K-specific nAb titers compared to mAb-treated individuals who did not develop resistance. All participants who developed the E484K mAb resistance mutation were eventually able to clear the virus. Conclusion: Emerging drug resistance after SARS-CoV-2-specific mAb therapy led to a heightened host neutralizing antibody response to the mAb-resistant variant that was associated with eventual viral clearance. This demonstrates the interplay between the antiviral treatment-directed viral evolution and subsequent host immune response in viral clearance.

4.
Pathog Immun ; 9(2): 58-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165724

RESUMO

Background: Assessing the breadth and duration of antigen-specific binding antibodies provides valuable information for evaluating interventions to treat or prevent SARS-CoV-2 infection. Multiplex immunoassays are a convenient method for rapid measurement of antibody responses but can sometimes provide discordant results, and antibody positive percent agreement for COVID-19 diagnosis can vary depending on assay type, disease severity, and population sampled. Therefore, we compared two assays marked for research applications, MSD and Bio-Plex Pro, to evaluate qualitative interpretation of serostatus and quantitative detection of antibodies of varying isotypes (IgG, IgM, and IgA) against receptor binding domain (RBD) and nucleocapsid (N) antigens. Methods: Specimens from ACTIV-2/A5401, a placebo-controlled clinical trial of the SARSCoV-2 monoclonal antibody (mAb) bamlanivimab to prevent COVID-19 disease progression, were used to evaluate the concordance of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 Serology Assay and the Meso Scale Discovery (MSD) V-PLEX COVID-19 Panel 1 serology assay in detecting and quantifying IgG, IgA, and IgM binding anti-SARS-CoV-2 antibody responses against the RBD and N antigens. Data were disaggregated by study arm, bamlanivimab dose, days post-enrollment, and presence of emerging resistance. Results: We observed 90.5% (412 of 455 tests) concordance for anti-RBD IgG and 87% (396 of 455) concordance for anti-N IgG in classifying samples as negative or positive based on assay-defined cutoffs. Antibody levels converted to the WHO standard BAU/mL were significantly correlated for all isotypes (IgG, IgM, and IgA) and SARS-CoV-2 antigen targets (RBD and N) tested that were common between the two assays (Spearman r 0.65 to 0.92, P < 0.0001). Both assays uncovered evidence of diminished host-derived IgG immune responses in participants treated with bamlanivimab compared to placebo. Assessment of immune responses in the four individuals treated with the 700 mg of bamlanivimab with emerging mAb resistance demonstrated a stronger anti-N IgG response (MSD) at day 28 (median 2.18 log BAU/mL) compared to participants treated with bamlanivimab who did not develop resistance (median 1.55 log BAU/mL). Conclusions: These data demonstrate the utility in using multiplex immunoassays for characterizing the immune responses with and without treatment in a study population and provide evidence that monoclonal antibody treatment in acute COVID-19 may have a modest negative impact on development of host IgG responses.

5.
Open Forum Infect Dis ; 11(7): ofae344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015352

RESUMO

Background: We evaluated naturally occurring nirmatrelvir-ritonavir (NTV/r) resistance-associated mutations (RAMs) among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains from Botswana, a country with no NTV/r use to date, in order to recommend the usage of the agent for high-risk patients with coronavirus disease 2019 (COVID-19). Methods: We conducted a retrospective analysis using 5254 complete SARS-CoV-2 sequences from Botswana (September 2020-September 2023). We evaluated the mutational landscape of SARS-CoV-2 3-Chymotrypsin-like protease (3CLpro) relative to the highlighted list of RAMs granted Food and Drug Administration Emergency Use Authorization in 2023. Results: The sequenced 5254 samples included Beta variants of concerns (VOCs; n = 323), Delta VOCs (n = 1314), and Omicron VOCs (n = 3354). Overall, 77.8% of the sequences exhibited at least 1 polymorphism within 76/306 amino acid positions in the nsp5 gene. NTV/rRAMs were identified in 34/5254 (0.65%; 95% CI, 0.43%-0.87%) and occurred at 5 distinct positions. Among the NTV/r RAMS detected, A191V was the most prevalent (24/34; 70.6%). Notably, T21I mutation had a prevalence of 20.6% (7/34) and coexisted with either K90R (n = 3) polymorphism in Beta sequences with RAMs or P132H (n = 3) polymorphism for Omicron sequences with RAMs. Other NTV/r RAMs detected included P108S, with a prevalence of 5.88% (2/34), and L50F, with a prevalence of 2.94% (1/34). NTV/r RAMs were significantly higher (P < .001) in Delta (24/35) compared with Beta (4/34) and Omicron (6/34) sequences. Conclusions: The frequency of NTV/r RAMs in Botswana was low. Higher rates were observed in Delta VOCs compared to Omicron and Beta VOCs. As NTV/r use expands globally, continuous surveillance for drug-resistant variants is essential, given the RAMs identified in our study.

6.
J Infect Dis ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39028902

RESUMO

BACKGROUND: To address the need for novel COVID-19 therapies, we evaluated the fully-human polyclonal antibody product SAB-185 in a phase 3 clinical trial. METHODS: Non-hospitalized high-risk adults within 7 days of COVID-19 symptom onset were randomized 1:1 to open-label SAB-185 3,840 units/kg or casirivimab/imdevimab 1200 mg. Non-inferiority comparison was undertaken for the pre-Omicron population (casirivimab/imdevimab expected to be fully active) and superiority comparison for the Omicron population (casirivimab/imdevimab not expected to be active). Primary outcomes were the composite of all-cause hospitalizations/deaths and grade ≥3 treatment-emergent adverse events (TEAEs) through day 28. Secondary outcomes included time to sustained symptom improvement and resolution. RESULTS: Enrollment was terminated early due to low hospitalization/death rates upon Omicron emergence. 733 adults were randomized, 255 included in pre-Omicron and 392 in Omicron analysis populations. Hospitalizations/deaths occurred in 6 (5.0%) and 3 (2.2%) of pre-Omicron SAB-185 and casirivimab/imdevimab arms, respectively (absolute difference [95% CI] 2.7% [-2.3%, 8.6%]), inconclusive for non-inferiority; and 5 (2.5%) versus 3 (1.5%) (absolute difference 1.0% [-2.3%, 4.5%]) for Omicron. Risk ratios for grade ≥3 TEAEs were 0.94 [0.52, 1.71] (pre-Omicron) and 1.71 [0.96, 3.07] (Omicron). Time to symptom improvement and resolution were shorter for SAB-185, median 11 vs 14 (pre-Omicron) and 11 vs 13 days (Omicron) (symptom improvement), and 16 vs 24 days and 18 vs >25 days (symptom resolution), p<0.05 for symptom resolution for Omicron only. CONCLUSIONS: SAB-185 had an acceptable safety profile with faster symptom resolution in the Omicron population. Additional studies are needed to characterize its efficacy for COVID-19.

7.
Clin Infect Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018444

RESUMO

BACKGROUND: Reliable biomarkers of coronavirus disease 2019 (COVID-19) outcomes are critically needed. We evaluated associations of spike antibody (Ab) and plasma nucleocapsid antigen (N Ag) with clinical outcomes in nonhospitalized persons with mild-to-moderate COVID-19. METHODS: Participants were nonhospitalized adults with mild-to-moderate COVID-19 enrolled in ACTIV-2 between January and July 2021 and randomized to placebo. We used quantitative assays for severe acute respiratory syndrome coronavirus 2 spike Ab and N Ag in blood and determined numbers of hospitalization/death events within 28 days and time to symptom improvement. RESULTS: Of 209 participants, 77 (37%) had quantifiable spike Ab and 139 (67%) quantifiable N Ag. Median age was 50 years; 111 (53%) were female, 182 (87%) White, and 105 (50%) Hispanic/Latino. Higher risk of hospitalization/death was seen with unquantifiable (22/132 [16.7%]) versus quantifiable (1/77 [1.3%]) spike Ab (risk ratio [RR], 12.83 [95% confidence interval {CI}, 1.76-93.34]) and quantifiable (22/139 [15.8%]) vs unquantifiable (1/70 [1.4%]) N Ag (RR, 11.08 [95% CI, 1.52-80.51]). Increasing risk of hospitalizations/deaths was seen with increasing N Ag levels. Time to symptom improvement was longer with unquantifiable versus quantifiable spike Ab (median, 14 [interquartile range {IQR}, 8 to >27] vs 8 [IQR, 4-22] days; adjusted hazard ratio [aHR], 0.66 [95% CI, .45-.96]) and with quantifiable versus unquantifiable N Ag (median, 12 [7 to >27] vs 10 [5-22] days; aHR, 0.79 [95% CI, .52-1.21]). CONCLUSIONS: Absence of spike Ab and presence of plasma N Ag predicted hospitalization/death and delayed symptom improvement in COVID-19 outpatients.

8.
PLoS Pathog ; 20(7): e1012236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39074163

RESUMO

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.


Assuntos
Infecções por HIV , HIV-1 , Carga Viral , Humanos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Carga Viral/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/imunologia , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Masculino
9.
J Neuroinflammation ; 21(1): 163, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918792

RESUMO

BACKGROUND: The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS: We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION: These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.


Assuntos
COVID-19 , Macrófagos , Microglia , Placenta , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Feminino , Gravidez , Microglia/virologia , Humanos , Placenta/virologia , COVID-19/imunologia , Macrófagos/virologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , SARS-CoV-2/patogenicidade , Feto , Adulto , Encéfalo/virologia , Encéfalo/patologia , Camundongos , Animais
10.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746144

RESUMO

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.

11.
J Infect Dis ; 230(2): 394-402, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38716969

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were nonhospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S-gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- or dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared with single-active mAb treatment, treatment with dual-active mAbs led to faster viral load decline at study days 3 (P < .001) and 7 (P < .01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than with placebo (2.6% vs 0%; P < .001) and were more frequently detected in the setting of single-active compared with dual-active mAb treatment (7.3% vs 1.1%; P < .01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSIONS: Compared with single-active mAb therapy, dual-active mAbs led to similar clinical outcomes but significantly faster viral load decline and a lower risk of emergent resistance.


Assuntos
Anticorpos Monoclonais Humanizados , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Feminino , Masculino , Pessoa de Meia-Idade , Carga Viral/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Farmacorresistência Viral , Antivirais/uso terapêutico , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Idoso , Adulto , Quimioterapia Combinada
12.
Pathog Immun ; 9(1): 138-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746756

RESUMO

Background: Outpatient COVID-19 monoclonal antibody (mAb) treatment via subcutaneous delivery, if effective, overcomes the logistical burdens of intravenous administration. Methods: ACTIV-2/A5401 was a randomized, masked placebo-controlled platform trial where participants with COVID-19 at low risk for progression were randomized 1:1 to subcutaneously administered BMS-986414 (C135-LS) 200 mg, plus BMS-986413 (C144-LS) 200 mg, (BMS mAbs), or placebo. Coprimary outcomes were time to symptom improvement through 28 days; nasopharyngeal SARS-CoV-2 RNA below the lower limit of quantification (LLoQ) on days 3, 7, or 14; and treatment-emergent grade 3 or higher adverse events (TEAEs) through 28 days. Results: A total of 211 participants (105 BMS mAbs and 106 placebo) initiated study product. Time to symptom improvement favored the active therapy but was not significant (median 8 vs 10 days, P=0.19). There was no significant difference in the proportion with SARS-CoV-2 RNA

13.
PLoS Pathog ; 20(4): e1011680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635853

RESUMO

To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.


Assuntos
Anticorpos Monoclonais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Farmacorresistência Viral/imunologia , Carga Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico
15.
Open Forum Infect Dis ; 11(3): ofad694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449916

RESUMO

Background: T cells in people with human immunodeficiency virus (HIV) demonstrate an exhausted phenotype, and HIV-specific CD4+ T cells expressing programmed cell death 1 (PD-1) are enriched for latent HIV, making antibody to PD-1 a potential strategy to target the latent reservoir. Methods: This was a phase 1/2, randomized (4:1), double-blind, placebo-controlled study in adults with suppressed HIV on antiretroviral therapy with CD4+ counts ≥350 cells/µL who received 2 infusions of cemiplimab versus placebo. The primary outcome was safety, defined as any grade 3 or higher adverse event (AE) or any immune-related AE (irAE). Changes in HIV-1-specific polyfunctional CD4+ and CD8+ T-cell responses were evaluated. Results: Five men were enrolled (median CD4+ count, 911 cells/µL; median age, 51 years); 2 received 1 dose of cemiplimab, 2 received 2 doses, and 1 received placebo. One participant had a probable irAE (thyroiditis, grade 2); another had a possible irAE (hepatitis, grade 3), both after a single low-dose (0.3 mg/kg) infusion. The Safety Monitoring Committee recommended no further enrollment or infusions. All 4 cemiplimab recipients were followed for 48 weeks. No other cemiplimab-related serious AEs, irAEs, or grade 3 or higher AEs occurred. One 2-dose recipient of cemiplimab had a 6.2-fold increase in polyfunctional, Gag-specific CD8+ T-cell frequency with supportive increases in plasma HIV RNA and decreases in total HIV DNA. Conclusions: One of 4 participants exhibited increased HIV-1-specific T-cell responses and transiently increased HIV-1 expression following 2 cemiplimab infusions. The occurrence of irAEs after a single, low dose may limit translating the promising therapeutic results of cemiplimab for cancer to immunotherapeutic and latency reversal strategies for HIV. Clinical Trials Registration. NCT03787095.

16.
Surg Endosc ; 38(4): 2231-2239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498213

RESUMO

BACKGROUND: Biosynthetic meshes afford the cost advantages of being made from fully synthetic material, but are also biodegradable, making them a versatile option that can be used in both clean and contaminated cases. The aim of this study is to evaluate the safety profile and long-term outcomes of using GORE BIO-A (BIO-A) as an adjunct to abdominal wall reconstruction in all wound classes. METHODS: A retrospective review identified patients undergoing abdominal hernia repair using BIO-A from October 2008 to June 2018. The primary outcome was hernia recurrence rate. Only patients with at least 6-month follow-up were included when looking at recurrence rates. Secondary outcomes included 30-day morbidity categorized according to CDC Surgical Site Infection Criteria, return to operating/procedure room (RTOR), 30-day readmission, length of stay (LOS), and mortality. RESULTS: A total of 207 patients were identified, CDC Wound Classification breakdown was 127 (61.4%), 41 (19.8%), 14 (6.8%), and 25 (12.1%) for wound classes I, II, III, and IV, respectively. Median follow-up was 55.4 months (range 0.2-162.4). Overall recurrence rate was 17.4%. Contaminated cases experienced higher recurrence rates (28.8% versus 10.4%, p = 0.002) at a mean follow up of 46.9 and 60.8 months for contaminated and clean patients, respectively. Recurrent patients had higher BMI (32.4 versus 28.4 kg/m2, p = 0.0011), larger hernias (162.2 versus 106.7 cm2, p = 0.10), higher LOS (11.1 versus 5.6 days, p = 0.0051), and higher RTOR rates (16.7% versus 5.6%, p = 0.053). 51 (24.5%) patients experienced some morbidity, including 19 (9.2%) surgical site occurences, 7 (3.4%) superficial surgical site infections, 16 (7.7%) deep surgical site infections, and 1 (0.5%) organ space infection. CONCLUSION: This study affirms the use of biosynthetic mesh as a cost-effective alternative in all wound classifications, yielding good outcomes, limited long-term complications, and low recurrence. rates.


Assuntos
Hérnia Ventral , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/cirurgia , Resultado do Tratamento , Recidiva Local de Neoplasia/cirurgia , Hérnia Ventral/cirurgia , Hérnia Ventral/complicações , Estudos Retrospectivos , Deiscência da Ferida Operatória , Herniorrafia/métodos , Telas Cirúrgicas/efeitos adversos , Recidiva
17.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329130

RESUMO

BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.


Assuntos
Infecções por HIV , Humanos , Provírus/genética , Linfócitos T CD8-Positivos , Carga Viral , DNA
18.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370801

RESUMO

Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.

19.
J Infect Dis ; 229(3): 619-620, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38386686
20.
Sci Transl Med ; 16(731): eadk1599, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266109

RESUMO

Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Prospectivos , Cinética , Terapia de Imunossupressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA