Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Metabolites ; 14(10)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39452938

RESUMO

BACKGROUND: The increasing prevalence of autism spectrum disorder (ASD) highlights the need for objective diagnostic markers and a better understanding of its pathogenesis. Metabolic differences have been observed between individuals with and without ASD, but their causal relevance remains unclear. METHODS: Bidirectional two-sample Mendelian randomization (MR) was used to assess causal associations between circulating plasma metabolites and ASD using large-scale genome-wide association study (GWAS) datasets-comprising 1091 metabolites, 309 ratios, and 179 lipids-and three European autism datasets (PGC 2015: n = 10,610 and 10,263; 2017: n = 46,351). Inverse-variance weighted (IVW) and weighted median methods were employed, along with robust sensitivity and power analyses followed by independent cohort validation. RESULTS: Higher genetically predicted levels of sphingomyelin (SM) (d17:1/16:0) (OR, 1.129; 95% CI, 1.024-1.245; p = 0.015) were causally linked to increased ASD risk. Additionally, ASD children had higher plasma creatine/carnitine ratios. These MR findings were validated in an independent US autism cohort using machine learning analysis. CONCLUSION: Utilizing large datasets, two MR approaches, robust sensitivity analyses, and independent validation, our novel findings provide evidence for the potential roles of metabolomics and circulating metabolites in ASD diagnosis and etiology.

2.
ACS Appl Mater Interfaces ; 16(39): 52068-52079, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39297327

RESUMO

Sonodynamic therapy (SDT) can generate reactive oxygen species (ROS) to combat multidrug-resistant biofilms, which pose significant challenges to human health. As the key to producing ROS in SDT, the design of sonosensitizers with optimal molecular structures for sufficient ROS generation and activity in complex biofilm matrix is essential. In this study, we propose a π-expansion strategy and synthesize a series of small-molecule metal Ru(II) complexes (Ru1-Ru4) as sonosensitizers (Ru1-Ru4) to enhance the efficacy of SDT. Among these complexes, Ru4 demonstrates remarkable ROS generation capability (∼65.5-fold) that surpasses most commercial sonosensitizers (1.3- to 6.7-fold). Through catalyzing endogenous H2O2 decomposition, Ru4 facilitates the production of abundant O2 as a resource for 1O2 and the generation of new ROS (i.e., •OH) for improving SDT. Furthermore, Ru4 maintains the sustained ROS activity via consuming the interferences (e.g., glutathione) that react with ROS. Due to these unique advantages, Ru4 exhibits potent biofilm eradication ability against methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo, underscoring its potential use in clinical settings. This work introduces a new approach for designing effective sonosensitizers to eliminate biofilm infections, addressing a critical need in healthcare management.


Assuntos
Antibacterianos , Biofilmes , Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Espécies Reativas de Oxigênio , Rutênio , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Rutênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Animais , Camundongos , Terapia por Ultrassom , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana
3.
Angew Chem Int Ed Engl ; : e202415802, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292161

RESUMO

Ventricular arrhythmias (VAs) triggered by myocardial infarction (MI) are the leading cause of sudden cardiac mortality worldwide. Current therapeutic strategies for managing MI-induced VAs, such as left stellate ganglion resection and ablation, are suboptimal, highlighting the need to explore safer and more effective intervention strategies. Herein, we rationally designed two supramolecular sonosensitizers RuA and RuB, engineered through acceptor modification to generate moderate reactive oxygen species (ROS) to modulate VAs. Both RuA and RuB demonstrated high ultrasound (US)-activated ROS production efficiency, with singlet oxygen (1O2) quantum yield (ΦΔ) of 0.70 and 0.88, respectively, surpassing ligand IR1105 and the conventional sonosensitizer ICG (ΦΔ =0.40). In vitro, RuB, at a modest concentration and under US intensity notably boosts pro-survival autophagy in microglia BV2 cell. To improve in vivo stability and biocompatibility, RuB was further encapsulated into DSPE-PEG5000 to prepare RuB NPs. In vivo studies after microinjection of RuB NPs into the paraventricular nucleus and subsequent US exposure, demonstrated that RuB NPs-mediated US modulation effectively suppresses sympathetic nervous activity (SNA) and inflammatory responses, thereby preventing VAs. Importantly, no tissue injury was observed post RuB NPs-mediated US modulation. This work pioneers the design of long-wave emission supramolecular sonosensitizers, offering new insights into regulating cardiovascular diseases.

4.
J Alzheimers Dis ; 101(2): 577-587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240633

RESUMO

Background: The fractional amplitude of low-frequency fluctuations (fALFFs) can detect spontaneous brain activity. However, the association between abnormal brain activity and cognitive function, amyloid protein (Aß), and emotion in Alzheimer's disease (AD) patients remains unclear. Objective: This study aimed to survey alterations in fALFF in different frequency bands and the relationship between abnormal brain activity, depressive mood, and cognitive function to determine the potential mechanism of AD. Methods: We enrolled 34 AD patients and 32 healthy controls (HC). All the participants underwent resting-state magnetic resonance imaging, and slow-4 and slow-5 fALFF values were measured. Subsequently, the study determined the correlation of abnormal brain activity with mood and cognitive function scores. Results: AD patients revealed altered mfALFF values in the slow-5 and slow-4 bands. In the slow-4 band, the altered mfALFF regions were the right cerebellar crus I, right inferior frontal orbital gyrus (IFOG), right supramarginal gyrus, right precuneus, angular gyrus, and left middle cingulate gyrus. Elevated mfALFF values in the right IFOG were negatively associated with Montreal Cognitive Assessment scores, Boston Naming Test, and Aß1-42 levels. The mfALFF value of the AD group was lower than the HC group in the slow-5 band, primarily within the right inferior parietal lobule and right precuneus. Conclusions: Altered mfALFF values in AD patients are linked with cognitive dysfunction. Compared with HCs, Aß1-42 levels in AD patients are related to abnormal IFOG activity. Therefore, mfALFF could be a potential biomarker of AD.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Pessoa de Meia-Idade , Cognição/fisiologia , Peptídeos beta-Amiloides/metabolismo
5.
Cell Biochem Biophys ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333452

RESUMO

Digital enzyme-linked immunosorbent assays (dELISAs) very sensitively detect biomarkers that cannot be measured using traditional methods. The molecules are confined within a small volume, their counts accurately computed, and the results rapidly delivered. Digital ELISAs find many applications. In recent years, such ELISAs have become increasingly used to aid ophthalmological diagnoses and treatments, and have revolutionized the field. This article reviews the applications of dELISAs in clinical practice, especially in the sphere of ophthalmology.

6.
Technol Cancer Res Treat ; 23: 15330338241273198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166278

RESUMO

Background: To evaluate the efficacy and safety of allogenic CD8 + natural killer T (CD8+ NKT) immunotherapy combined with gefitinib in the treatment of advanced or metastatic EGFR mutant non-small cell lung cancer (NSCLC). Methods: This study is prospective. The NSCLC patients with exon 19 (Ex19del) or exon 21 L858R point mutations, and response to gefitinib treatment were enrolled into the trial to be randomly assigned into the gefitinib arm and the gefitinib/NKT arm. Allogenic CD8+ NKT cells were cultured in vitro and adaptive transferred into the patients via vein in the gefitinib/NKT arm. The primary endpoint was progression-free survival (PFS). Secondary endpoint analysis included time to disease progression (TTP), overall survival (OS), levels of serum tumour markers for carcinoembryonic antigen (CEA) and alanine aminotransferase (ALT) in the blood, the response rate and safety. From July 2017 to June 2021, 19 patients were randomly assigned to the gefitinib arm (n = 8) and the gefitinib/NKT arm (n = 11). Results: The estimated median survival PFS in the gefitinib/NKT arm was significantly longer than that of the gefitinib arm (12 months vs 7 months). Similar results were also observed for the median TTP. Moreover, the gefitinib/NKT arm had better CEA control than the gefitinib arm. Clinical grade 3 adverse reactions occurred in 64% and 39% of patients in the gefitinib/NKT arm and the gefitinib arm, respectively. The most common grade 3 adverse events in the gefitinib/NKT arm included abnormal liver function in 8 cases (73%) and diarrhoea in 1 case (9%), both of which resolved after drug intervention. Conclusion: The PFS of EGFR-mutated advanced NSCLC treated with allogenic CD8+ NKT cells combined with gefitinib was longer than that of gefitinib alone. No obvious serious adverse reactions occurred, and the patients compliance and survival status were good.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Mutação , Células T Matadoras Naturais , Humanos , Feminino , Receptores ErbB/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Masculino , Idoso , Células T Matadoras Naturais/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Gefitinibe/uso terapêutico , Terapia Combinada , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Estudos Prospectivos , Imunoterapia/métodos , Resultado do Tratamento , Estadiamento de Neoplasias
7.
J Am Chem Soc ; 146(32): 22797-22806, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087792

RESUMO

The construction of isotypic high-nuclearity inorganic cages with identical pristine parent structure and increasing nuclearity is highly important for molecular growth and structure-property relationship study, yet it still remains a great challenge. Here, we provide an in situ growth approach for successfully synthesizing a series of new giant hollow polymolybdate dodecahedral cages, Mo250, Mo260-I, and Mo260-E, whose structures are growth based on giant polymolybdate cage Mo240. Remarkably, they show two pathways of nuclear growth based on Mo240, that is, the growth of 10 and 20 Mo centers on the inner and outer surfaces to afford Mo250 and Mo260-I, respectively, and the growth of 10 Mo centers both on the inner and outer surfaces to give Mo260-E. To the best of our knowledge, this is the first study to display the internal and external nuclear growth of a giant hollow polyoxometalate cage. More importantly, regular variations in structure and nuclearity confer these polymolybdate cages with different optical properties, oxidative activities, and hydrogen atom transfer effect, thus allowing them to exhibit moderate to excellent photocatalytic performance in oxidative cross-coupling reactions between different unactivated alkanes and N-heteroarenes. In particular, Mo240 and Mo260-E with better comprehensive abilities can offer the desired coupling product with yield up to 92% within 1 h.

8.
Adv Sci (Weinh) ; : e2405613, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193873

RESUMO

Saccharides are involved in nearly all life processes. However, due to the complexity and diversity of saccharide structures, their selective recognition is one of the most challenging tasks. Distinct from conventional receptor designs that rely on delicate and complicated molecular structures, here a novel and precise ternary co-assembled strategy is reported for achieving saccharide recognition, which originates from a halogen ions-driven aggregation-induced emission module called p-Toluidine, N, N'-1-propen-1-yl-3-ylidene hydrochloride (PN-Tol). It exhibits ultra-strong self-assembly capability and specifically binds to 4-mercaptophenylboronic acid (MPBA), forming highly ordered co-assemblies. Subsequent binding of various saccharides results in heterogeneous ternary assembly behaviors, generating cluster-like, spherical, and rod-like microstructures with well-defined crystalline patterns, accompanied by significant enhancement of fluorescence. Owing to the excellent expandability of the PN module, an array sensor is constructed that enables easy classification of diverse saccharides, including epimer and optical isomers. This strategy demonstrates wide applicability and paves a new avenue for saccharide recognition, analysis, and sequencing.

9.
Phytochem Anal ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165116

RESUMO

INTRODUCTION: Chinese herbal medicines have been utilized for thousands of years to prevent and treat diseases. Accurate identification is crucial since their medicinal effects vary between species and varieties. Metabolomics is a promising approach to distinguish herbs. However, current metabolomics data analysis and modeling in Chinese herbal medicines are limited by small sample sizes, high dimensionality, and overfitting. OBJECTIVES: This study aims to use metabolomics data to develop HerbMet, a high-performance artificial intelligence system for accurately identifying Chinese herbal medicines, particularly those from different species of the same genus. METHODS: We propose HerbMet, an AI-based system for accurately identifying Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract discriminative features from input samples and uses a multilayer perceptron for classification. Additionally, we design the double dropout regularization module to alleviate overfitting and improve model's performance. RESULTS: Compared to 10 commonly used machine learning and deep learning methods, HerbMet achieves superior accuracy and robustness, with an accuracy of 0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng species. After feature selection by 25 different feature ranking techniques in combination with prior knowledge, we obtained 100% accuracy and an F1-score for discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable inference speed and computational costs compared to existing approaches on both CPU and GPU. CONCLUSIONS: HerbMet surpasses existing solutions for identifying Chinese herbal medicines species. It is simple to use in real-world scenarios, eliminating the need for feature ranking and selection in classical machine learning-based methods.

10.
J Environ Manage ; 366: 121714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032253

RESUMO

Antibiotic shock may potentially impact the performance of promising microalgae-nitrifying bacteria consortia (MNBC) processes. This study investigated physiological behaviors of MNBC under sulfamethoxazole (SMX) shock (mg/L level) and verified a light regulating strategy for improving process performance. Results showed that SMX shock did not affect ammonium removal but caused nitrite accumulation, resulting from combined effects of excessive reactive oxidative species (ROS) production, inhibited microalgal photosynthetic activity, upregulated expressions of amoA and hao, and downregulated expression of nxrA. Moreover, high ammonium concentration aggravated nitrite accumulation and reduced ammonium removal owing to significantly reduced dissolved oxygen (DO). Increasing light intensity enhanced microalgal photo-oxygenation and promoted expressions of all nitrification-related genes, thus improving ammonium removal and alleviating nitrite accumulation. A central composite design coupled with response surface methodology (CCD-RSM) further demonstrated the negative impacts of SMX shock and high ammonium on MNBC and the effectiveness of the light regulation in maintaining stable process performance. This study provides theoretical basis for physiological responses and regulatory strategy of the MNBC process facing short-term antibiotic shock.


Assuntos
Microalgas , Nitrificação , Nitritos , Sulfametoxazol , Microalgas/metabolismo , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Luz , Antibacterianos
11.
Inflamm Bowel Dis ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078887

RESUMO

BACKGROUND: Intestinal fibrosis, a complex complication of colitis, is characterized by excessive extracellular matrix (ECM) deposition. Estrogen receptor (ER) ß may play a role in regulating this process. METHODS: Intestinal tissue samples from stenotic and nonstenotic regions were collected from Crohn's disease (CD) patients. RNA sequencing was conducted on a mouse model to identify differentially expressed mRNAs. Histological, immunohistochemical, and semiquantitative Western blotting analyses were employed to assess ECM deposition and fibrosis. The roles of relevant pathways in fibroblast transdifferentiation, activity, and migration were examined. RESULTS: Estrogen receptor ß expression was found to be downregulated in the stenotic intestinal tissue of CD patients. Histological fibrosis score, collagen deposition, and profibrotic molecules in the colon of an intestinal fibrosis mouse model were significantly decreased after activation of ERß. In vitro, ERß activation alleviated transforming growth factor (TGF)-ß-induced fibroblast activation and migration, as evidenced by the inhibition of col1α1, fibronectin, α-smooth muscle actin (α-SMA), collagen I, and N-cadherin expression. RNA sequencing showed that ERß activation affected the expression of genes involved in ECM homeostasis and tissue remodeling. Enrichment analysis of differentially expressed genes highlighted that the downregulated genes were enriched in ECM-receptor interaction, TGF-ß signaling, and Toll-like receptor (TLR) signaling. Western blotting confirmed the involvement of TGF-ß/Smad and TLR4/MyD88/NF-κB signaling pathways in modulating fibrosis both in vivo and in vitro. The promoter activity of TGF-ß1 and TLR4 could be suppressed by ERß transcription factor. CONCLUSION: Estrogen receptor ß may regulate intestinal fibrosis through modulation of the TGF-ß/Smad and TLR4/MyD88/NF-κB signaling pathways. Targeting ERß activation could be a promising therapeutic strategy for treating intestinal fibrosis.


Imagine your gut is like a garden hose. In Crohn's disease, parts of this "hose" get narrow and blocked. Scientists found less of a helpful protein, ERß, in these narrow areas. In an experiment with mice, boosting ERß lessened the gut damage and reduced the buildup of collagen­the "blockage" in our hose analogy. Also, ERß calmed overactive cells causing these issues, acting like a peacemaker. This protein "talks" to cells through channels called TGF-ß/Smad and TLR4/NF-κB, telling them to relax. This could be a new way to tackle such gut problems!

12.
Biochem Biophys Res Commun ; 733: 150450, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39067248

RESUMO

BACKGROUND: Mechano-growth factor (MGF), which is a growth factor produced specifically in response to mechanical stimuli, with potential of tissue repair and regeneration. Our previous research has shown that MGF plays a crucial role in repair of damaged periodontal ligaments by promoting differentiation of periodontal ligament stem cells (PDLSCs). However, the molecular mechanism is not fully understood. This study aimed to investigated the regulatory effect of MGF on differentiation of PDLSCs and its molecular mechanism. METHODS: Initially, we investigated how MGF impacts cell growth and differentiation, and the relationship with the activation of Fyn-p-YAPY357 and LATS1-p-YAPS127. Then, inhibitors were used to interfere Fyn phosphorylation to verify the role of Fyn-p-YAP Y357 signal after MGF stimulation; moreover, siRNA was used to downregulate YAP expression to clarify the function of YAP in PDLSCs proliferation and differentiation. Finally, after C3 was used to inhibit the RhoA expression, we explored the role of RhoA in the Fyn-p-YAP Y357 signaling pathway in PDLSCs proliferation and differentiation. RESULTS: Our study revealed that MGF plays a regulatory role in promoting PDLSCs proliferation and fibrogenic differentiation by inducing Fyn-YAPY357 phosphorylation but not LATS1-YAP S127 phosphorylation. Moreover, the results indicated that Fyn could not activate YAP directly but rather activated YAP through RhoA in response to MGF stimulation. CONCLUSION: The research findings indicated that the Fyn-RhoA-p-YAPY357 pathway is significant in facilitating the proliferation and fibrogenic differentiation of PDLSCs by MGF. Providing new ideas for the study of MGF in promoting periodontal regenerative repair.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Proliferação de Células , Ligamento Periodontal , Proteínas Proto-Oncogênicas c-fyn , Transdução de Sinais , Células-Tronco , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Humanos , Proliferação de Células/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo
13.
J Headache Pain ; 25(1): 104, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902598

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are considered first-line medications for acute migraine attacks. However, the response exhibits considerable variability among individuals. Thus, this study aimed to explore a machine learning model based on the percentage of amplitude oscillations (PerAF) and gray matter volume (GMV) to predict the response to NSAIDs in migraine treatment. METHODS: Propensity score matching was adopted to match patients having migraine with response and nonresponse to NSAIDs, ensuring consistency in clinical characteristics and migraine-related features. Multimodal magnetic resonance imaging was employed to extract PerAF and GMV, followed by feature selection using the least absolute shrinkage and selection operator regression and recursive feature elimination algorithms. Multiple predictive models were constructed and the final model with the smallest predictive residuals was chosen. The model performance was evaluated using the area under the receiver operating characteristic (ROCAUC) curve, area under the precision-recall curve (PRAUC), balance accuracy (BACC), sensitivity, F1 score, positive predictive value (PPV), and negative predictive value (NPV). External validation was performed using a public database. Then, correlation analysis was performed between the neuroimaging predictors and clinical features in migraine. RESULTS: One hundred eighteen patients with migraine (59 responders and 59 non-responders) were enrolled. Six features (PerAF of left insula and left transverse temporal gyrus; and GMV of right superior frontal gyrus, left postcentral gyrus, right postcentral gyrus, and left precuneus) were observed. The random forest model with the lowest predictive residuals was selected and model metrics (ROCAUC, PRAUC, BACC, sensitivity, F1 score, PPV, and NPV) in the training and testing groups were 0.982, 0.983, 0.927, 0.976, 0.930, 0.889, and 0.973; and 0.711, 0.648, 0.639, 0.667,0.649, 0.632, and 0.647, respectively. The model metrics of external validation were 0.631, 0.651, 0.611, 0.808, 0.656, 0.553, and 0.706. Additionally, a significant positive correlation was found between the GMV of the left precuneus and attack time in non-responders. CONCLUSIONS: Our findings suggest the potential of multimodal neuroimaging features in predicting the efficacy of NSAIDs in migraine treatment and provide novel insights into the neural mechanisms underlying migraine and its optimized treatment strategy.


Assuntos
Anti-Inflamatórios não Esteroides , Substância Cinzenta , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Neuroimagem , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/diagnóstico por imagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Feminino , Adulto , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/patologia , Neuroimagem/métodos , Aprendizado de Máquina , Pessoa de Meia-Idade , Biomarcadores
14.
Anal Chem ; 96(19): 7651-7660, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690989

RESUMO

Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.


Assuntos
Vesículas Extracelulares , Ouro , Neoplasias Pulmonares , Análise Espectral Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Humanos , Ouro/química , Microeletrodos
15.
J Adv Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750695

RESUMO

INTRODUCTION: Crohn's Disease (CD) is a chronic inflammatory condition characterized by intestinal fibrosis, severely impacting patient quality of life. The molecular mechanisms driving this fibrosis remain inadequately understood. Recent evidence implicates mesenteric adipose tissue (MAT) in CD pathogenesis, particularly through its exosome secretion, which may influence fibrogenic pathways. Understanding the role of MAT-derived exosomes is crucial for unraveling these molecular processes. OBJECTIVES: This study aims to elucidate the role of MAT-derived exosomes in CD-related intestinal fibrosis. We focus on investigating their molecular composition and the potential impact on fibrosis progression, with an emphasis on identifying novel therapeutic targets. METHODS: We induced chronic intestinal inflammation in mice using dinitrobenzene sulfonic acid (DNBS), simulating CD-like fibrosis. Exosomes were isolated from DNBS-treated mice (MG) and normal controls (NG) for characterization using electron microscopy and proteomic analysis. Additionally, human colonic fibroblasts were exposed to exosomes from CD patients and healthy individuals, with subsequent assessment of fibrogenesis through proteomic and RNA sequencing analyses. RESULTS: Proteomic analyses revealed a significant activation of the TGF-ß signaling pathway in MG-treated mice compared to controls, correlating with enhanced intestinal fibrosis. In vitro experiments demonstrated that colonic fibroblasts exposed to CD patient-derived exosomes exhibited increased fibrogenic activity. Protein docking and co-immunoprecipitation studies suggested a critical interaction between TINAGL1 and SMAD4, enhancing fibrosis. Importantly, in vivo experiments corroborated that recombinant TINAGL1 protein exacerbated DNBS-induced intestinal fibrosis. CONCLUSION: Our findings highlight the pivotal role of MAT-derived exosomes, particularly those carrying TINAGL1, in the progression of intestinal fibrosis in CD. The involvement of the TGF-ß signaling pathway, especially the SMAD4 protein, offers new insights into the molecular mechanisms of CD-related fibrosis and presents potential targets for therapeutic intervention.

16.
Bioresour Technol ; 401: 130736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670289

RESUMO

Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.


Assuntos
Carbono , Hidrodinâmica , Compostos Orgânicos , Oxigênio , Águas Residuárias , Carbono/química , Águas Residuárias/química , Reatores Biológicos , Purificação da Água/métodos , Cianobactérias/metabolismo
17.
Adv Healthc Mater ; 13(17): e2303842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458147

RESUMO

Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.


Assuntos
Imagem Óptica , Fotoquimioterapia , Espécies Reativas de Oxigênio , Tiadiazóis , Fotoquimioterapia/métodos , Tiadiazóis/química , Tiadiazóis/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Imagem Óptica/métodos , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos Endogâmicos BALB C , Feminino
18.
Front Public Health ; 12: 1336687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525345

RESUMO

Background: This study aimed to determine the intention and willingness-to-pay (WTP) of Chinese parents/guardians to vaccinate their children with the EV-71 vaccine. Knowledge levels about hand, foot, and mouth disease (HFMD) and the EV-71 vaccine were also investigated. Methods: A cross-sectional, self-administered online survey was conducted between November 2022 and March 2023. A stratified multi-stage random sampling method was used to recruit parents/guardians of children aged 0-5 years in southeastern China. Results: A total of 3,626 complete responses were received. The mean knowledge score of HFMD was 9.99 (±4.23) out of a total of 14 points. The majority of the participants reported a somewhat willing intent (58.8%), followed by an extremely willing intent (28.9%). Participants who did not consider the EV-71 vaccine expensive (OR = 2.94, 95%CI 2.45-3.53) perceived that the EV-71 vaccine is effective (OR = 2.73, 95%CI 1.52-4.90), and a high knowledge level of HFMD (OR = 1.90, 95%CI 1.57-2.29) had the highest significant odds of having an extremely willing intent to vaccinate their children with the EV-71 vaccine. The median (interquartile range [IQR]) of WTP for the EV-71 vaccine was CNY¥200/USD$28 (IQR CNY¥100-400/USD$14-56). The highest marginal WTP for the vaccine was mainly influenced by the perceived high cost of the vaccine. Those participants who did not consider the EV-71 vaccine expensive had more than 10 times higher odds of vaccinating their children (OR = 10.86, 95%CI 8.49-13.88). Perceived susceptibility, perceived benefits, and perceived barriers were also significant influencing factors in the highest marginal WTP. Conclusion: The findings demonstrate the importance of improving health promotion and reducing the barriers to EV-71 vaccination. Therefore, it is important to improve health promotion and reduce the barriers to EV-71 vaccination.


Assuntos
Doença de Mão, Pé e Boca , Vacinas Virais , Humanos , Pré-Escolar , Doença de Mão, Pé e Boca/prevenção & controle , Estudos Transversais , Intenção , Vacinação , Pais , China
19.
Anal Chem ; 96(11): 4495-4504, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445954

RESUMO

The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Vírus , Humanos , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Antígenos Virais , Análise Espectral Raman
20.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513217

RESUMO

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Humanos , Rutênio/farmacologia , Espécies Reativas de Oxigênio , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Lisossomos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA