Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731354

RESUMO

The objective of this study was to investigate age-related changes in cashmere production and the population of active secondary hair follicles in cashmere goats across different age groups as well as to explore the association between secondary hair follicle activity and oxidative stress. A total of 104 adult Inner Mongolian ewe goats, aged between 2 and 7 years old, were randomly selected as experimental subjects. Skin samples were collected in August 2020 and cashmere samples were collected in April 2021. The cashmere fiber yield, staple length, and diameter showed age-related variations in cashmere goats aged 2 to 7 years (p < 0.05). Cashmere production was higher in goats aged 2-4 years compared to those aged 5-7 years (p < 0.05). There were no significant differences in the population of primary and secondary hair follicles among goats aged 2 to 7 years. However, the population of active secondary hair follicles varied significantly with age, with the younger group (aged 2-4 years) having a higher population than those aged 5-7 years (p < 0.05). A moderate negative correlation was observed between cashmere fiber diameter and the population of active secondary hair follicles (p < 0.05). Age-related variations in skin antioxidant capacity and oxidative damage were observed among cashmere goats aged 2 to 7 years old (p < 0.05). Goats aged 2 to 4 years exhibited higher antioxidant capacity and lower oxidative damage (p < 0.05). Interestingly, the skin's antioxidant capacity and oxidative damage exhibited significant positive and negative correlations with the population of active secondary hair follicles (p < 0.05). This study presents a novel approach to enhance the activity of secondary hair follicles and improve cashmere production performance through the regulation of oxidative stress.

2.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675062

RESUMO

The development of high-performance rubber composites has always been a research hotspot in the field of conveyor belt manufacturing. In this work, a rubber cover joint composite made of reduced graphene oxide (rGO) was prepared using latex mixing and mechanical blending methods, with a steel wire rope conveyor belt as the research object, and the influence of the rGO content on the properties of the rubber composite is discussed. The structure and morphology characterization of the rGO/NR rubber show that the addition of rGO does not change its crystal structure, and 1.2 phr rGO is uniformly dispersed throughout the rubber composite. As more rGO is added, the mechanical properties of the rGO rubber cover joint first improve and then worsen. With the addition of 1.2 phr, the cross-linking density increases by 80.6%, the tensile strength of the rubber composites increases by 49.7%, the elongation at break increases by 23.6%, and the adhesion strength increases by 12.4%. The tensile strength of the rGO rubber cover joint can still maintain 72.5% of its pre-thermal aging value. The wear resistance and thermal conductivity increase as more phr is added. When 3.0 phr is added, the wear resistance of the rubber composites increases by 32.9%, the thermal conductivity increases by 118.8%, and the temperature difference at the completion of vulcanization decreases from 4.5 °C to 1.8 °C. The results show that when 1.2 phr of rGO is added, the rubber conveyor belt joint obtains the best comprehensive performance. These enhanced comprehensive properties allow for the practical application of rGO nanomaterials to conveyor belt rubber.

3.
Chronic Dis Transl Med ; 10(1): 1-11, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450299

RESUMO

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease, and the "four-hit" theory represents its currently accepted pathogenic mechanism. Mucosal immunity triggered by infections in the respiratory tract, intestines, or other areas leads to antigen presentation, T cell stimulation, B cell maturation, and the production of IgA-producing plasma cells. The proteins B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are involved in this process, and alternative complement and lectin pathway activation are also part of the pathogenic mechanism. Kidney Disease Improving Global Outcomes guidelines indicate that a specific effective treatment for IgAN is lacking, with renin-angiotensin-aldosterone system inhibitors being the primary therapy. Recent research shows that biological agents can significantly reduce proteinuria, stabilize the estimated glomerular filtration rate, and reverse some pathological changes, such as endocapillary proliferation and crescent formation. There are four main categories of biological agents used to treat IgA nephropathy, specifically anti-CD20 monoclonal antibodies, anti-BLyS or APRIL monoclonal antibodies, monoclonal antibodies targeting both BLyS and APRIL (telitacicept and atacicept), and monoclonal antibodies inhibiting complement system activation (narsoplimab and eculizumab). However, further research on the dosages, treatment duration, long-term efficacy, and safety of these biological agents is required.

4.
Microorganisms ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543550

RESUMO

Potato common scab, an economically important disease worldwide, is caused by pathogenic Streptomyces strains mainly through the effects of thaxtomin. The cello-oligosaccharides binding protein CebE is proposed as a gateway to the pathogenic development of Streptomyces scabiei. In this study, two functional CebE encoding genes, GEO5601 and GEO7671, were identified in pathogenic Streptomyces sp. AMCC400023. With a higher binding affinity towards signal molecules, the deletion of GEO5601 severely impaired thaxtomin-producing capacity and reduced the strain's pathogenicity. Transcriptional analysis confirmed that CebE5601 is also responsible for the import and provision of carbon sources for cell growth. With lower binding affinity, the pathogenicity island (PAI)-localized CebE7671 may assume a new function of mediating the biological process of sporulation, given the significantly impaired formation of ΔGEO7671 spores. The mechanisms of action of CebE proteins unraveled in Streptomyces sp. AMCC400023 will help pave the way for more effective prevention of the potato common scab disease.

5.
Nitric Oxide ; 145: 33-40, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382866

RESUMO

OBJECTIVE: Hydrogen sulfide (H2S) is associated with depressive-like behavior in rodents. We undertook cross-sectional and longitudinal analyses of plasma levels of H2S and its substrate homocysteine (Hcy) in depression and assessed the association of both parameters with psychopathology and cognitive function. METHODS: Forty-one patients suffering from depression (PSDs) and 48 healthy volunteers were recruited. PSDs were treated for 8 weeks. Analyzable data were collected from all participants for assessment of their psychopathology and cognitive function. Plasma was collected for determination of levels of H2S and Hcy, and data were correlated to determine their potential as plasma biomarkers. RESULTS: Cross-sectional analyses revealed PSDs to have a low plasma H2S level and high Hcy level. Longitudinal analyses revealed that 8 weeks of treatment reversed the changes in plasma levels of H2S and Hcy in PSDs. Plasma levels of H2S and Hcy were associated with psychopathology and cognitive function in depression. The area under the receiver operating characteristic curve (AUC) for a combination of plasma levels of H2S and Hcy and expression of the TNF gene (i.e., H2S-Hcy-TNF) was 0.848 for diagnosing depression and 0.977 for predicting the efficacy of antidepressant agents. CONCLUSION: Plasma levels of H2S and Hcy reflect changes in psychopathology and cognitive function in depression and H2S-Hcy-TNF has the potential to diagnose depression and predict the efficacy of antidepressant medications.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Estudos Transversais , Homocisteína
6.
Theor Appl Genet ; 137(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227064

RESUMO

KEY MESSAGE: The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma , Potássio
7.
Exp Anim ; 73(1): 124-135, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37839867

RESUMO

Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1ß, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.


Assuntos
Diterpenos , AVC Isquêmico , Fármacos Neuroprotetores , Camundongos , Animais , Microglia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico
8.
Am J Physiol Cell Physiol ; 326(1): C304-C316, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047305

RESUMO

It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)ß participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)ß as a new regulator of isthmin1 gene transcription. Targeting the C/EBPß-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Permeabilidade Capilar/fisiologia , Técnicas de Cocultura , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Lesão Pulmonar/genética , Sepse/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
9.
Neuroscience ; 536: 119-130, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37979840

RESUMO

Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 µL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 µL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.


Assuntos
Hipóxia , Ácido Láctico , Ratos , Animais , Ratos Wistar , Receptores Acoplados a Proteínas G
10.
JAMA Netw Open ; 6(11): e2343219, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976067

RESUMO

Importance: Gastrointestinal injury progression induced by antiplatelet therapy in patients after percutaneous coronary intervention (PCI) has not been well studied. Objective: To assess the association of aspirin, clopidogrel, and their combination with gastrointestinal injury progression among patients without high bleeding risk after PCI. Design, Setting, and Participants: This secondary analysis assessed data from the Optimal Antiplatelet Therapy for Prevention of Gastrointestinal Injury Evaluated by ANKON Magnetically Controlled Capsule Endoscopy (OPT-PEACE) double-masked, placebo-controlled, multicenter randomized clinical trial. The OPT-PEACE trial was conducted at 28 centers in China, and recruitment took place from July 13, 2017, to July 13, 2019. The trial included patients with stable coronary artery disease or acute coronary syndromes without ST-segment elevation after PCI. Statistical analysis was conducted from September 13, 2022, to January 23, 2023. Interventions: Patients underwent magnetically controlled capsule endoscopy (MCE) at baseline and after 6 months of dual antiplatelet therapy (DAPT) with aspirin (100 mg/d) plus clopidogrel (75 mg/d). Those with no evidence of gastrointestinal ulcers or bleeding (ie, the intention-to-treat [ITT] cohort) were randomized (1:1:1) to aspirin (100 mg/d) plus matching placebo (aspirin alone), clopidogrel (75 mg/d) plus matching placebo (clopidogrel alone), or DAPT for an additional 6 months. A third MCE was performed 12 months after PCI. Main Outcomes and Measures: The primary outcome was the rate of gastric injury progression as assessed with the results of the 3 MCEs (at baseline, 6 months, and 12 months) in the modified intention-to-treat (mITT) population. The key secondary outcome was the rate of small-intestinal injury progression. Gastric or small-intestinal injury progression was defined as a quantitative increase in erosions or ulcers between the second and third MCEs (at 6 and 12 months, respectively). Results: This study included the 394 patients in the mITT cohort. Their mean (SD) age was 56.9 (8.7) years, and most were men (296 [75.1%]). A total of 132 patients were randomized to aspirin alone, 132 to clopidogrel alone, and 130 to DAPT. Gastric injury progression occurred in 49 aspirin users (37.1%), 64 clopidogrel users (48.5%), and 69 DAPT users (53.1%) (P = .02), reflecting a lower rate of gastric injury progression among aspirin users vs DAPT users (risk ratio [RR], 0.70 [95% CI, 0.49-0.99]; P = .009). No significant difference was observed between clopidogrel alone and DAPT (48.5% vs 53.1%; P = .46) or between aspirin alone and clopidogrel alone (37.1% vs 48.5%; P = .06). A total of 51 aspirin users (38.6%), 65 clopidogrel users (49.2%), and 71 DAPT users (54.6%) (P = .03) developed progressive small-intestinal injury, reflecting a lower rate of small-intestinal injury among aspirin users vs DAPT users (RR, 0.71 [95% CI, 0.50-0.99]; P = .01). No difference was observed between patients treated with clopidogrel vs DAPT (49.2% vs 54.6%; P = .38) or with aspirin vs clopidogrel (38.6% vs 49.2%; P = .08). Conclusions and Relevance: In this secondary analysis of a randomized clinical trial, ongoing use of aspirin, clopidogrel, or their combination between 6 and 12 months after PCI was associated with progressive gastric and small-intestinal injury in a substantial proportion of patients, more so with DAPT than with monotherapy. Clopidogrel was at least as likely as aspirin to induce gastrointestinal injury progression. Future research is warranted to determine what impact the findings from MCEs would have on decision-making of antiplatelet therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT03198741.


Assuntos
Stents Farmacológicos , Intervenção Coronária Percutânea , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Inibidores da Agregação Plaquetária/efeitos adversos , Clopidogrel/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Úlcera/etiologia , Stents Farmacológicos/efeitos adversos , Aspirina/efeitos adversos , Hemorragia/induzido quimicamente
11.
Environ Sci Technol ; 57(48): 19817-19826, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972243

RESUMO

Iodate (IO3-) can be abiotically reduced by Fe(II) or biotically reduced by the dissimilatory Fe(III)-reducing bacterium Shewanella oneidensis (MR-1) via its DmsEFAB and MtrCAB. However, the intermediates and stoichiometry between the Fe(II) and IO3- reaction and the relative contribution of abiotic and biotic IO3- reduction by biogenic Fe(II) and MR-1 in the presence of Fe(III) remain unclear. In this study, we found that abiotic reduction of IO3- by Fe(II) produced intermediates HIO and I- at a ratio of 1:2, followed by HIO disproportionation to I- and IO3-. Comparative analyses of IO3- reduction by MR-1 wild type (WT), MR-1 mutants deficient in DmsEFAB or MtrCAB, and Shewanella sp. ANA-3 in the presence of Fe(III)-citrate, Fe(III) oxides, or clay minerals showed that abiotic IO3- reduction by biogenic Fe(II) predominated under iron-rich conditions, while biotic IO3- reduction by DmsEFAB played a more dominant role under iron-poor conditions. Compared to that in the presence of Fe(III)-citrate, MR-1 WT reduced more IO3- in the presence of Fe(III) oxides and clay minerals. The observed abiotic and biotic IO3- reduction by MR-1 under Fe-rich and Fe-limited conditions suggests that Fe(III)-reducing bacteria could contribute to the transformation of iodine species and I- enrichment in natural iodine-rich environments.


Assuntos
Iodo , Shewanella , Compostos Férricos , Oxirredução , Iodatos , Argila , Óxidos , Ferro , Compostos Ferrosos , Minerais , Citratos
12.
Animals (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003137

RESUMO

The objective of this study was to investigate the effects of fasted live-weight gain during the cashmere non-growing period on cashmere production performance and secondary hair follicle activity, to provide a theoretical basis for appropriate supplementary feeding of cashmere goats. Fifty Inner Mongolian cashmere goats aged 2-4 years old were randomly selected and weighed in May and September 2019, respectively. Based on fasted live-weight gain between the two weights, the experimental ewe goats were divided into two groups: 0-5.0 kg group (n = 30) and 5.0-10.0 kg group (n = 20). Skin samples and cashmere samples were collected. Results of a Pearson correlation analysis showed that fasted live-weight gain during the cashmere non-growing period had a moderate and strong positive correlation with cashmere yield (p = 0.021) and cashmere staple length (p = 0.002), respectively, but did not correlate with cashmere diameter (p = 0.254). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had a 17.10% increase in cashmere yield (p = 0.037) and an 8.09% increase in cashmere staple length (p = 0.045), but had no significant difference in cashmere diameter (p = 0.324). Results of a Pearson correlation analysis showed that there was a strong positive correlation between fasted live-weight gain and the population of active secondary hair follicles in the skin of cashmere goats (p < 0.01). Compared with cashmere goats with a fasted live-weight gain of 0-5.0 kg, cashmere goats with a fasted live-weight gain of 5.0-10.0 kg had an increase in the population of active secondary hair follicles (p < 0.05). In conclusion, the fasted live-weight gain during the cashmere non-growing period had a significant effect on secondary hair follicle activity and cashmere production performance in cashmere goats. Since fasted live-weight gain reflects nutritional level to a certain extent, this study suggests that nutritional manipulations such as supplementary feeding during cashmere non-growing periods can increase cashmere production performance. However, specific nutritional manipulations during the cashmere non-growing period need further research to increase cashmere production performance.

13.
Environ Sci Technol ; 57(40): 15277-15287, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751521

RESUMO

Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.


Assuntos
Arsênio , Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodo/análise , Iodetos/análise , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Sulfetos , Sulfatos/análise , China , Poluentes Químicos da Água/análise
14.
Arch Esp Urol ; 76(5): 341-346, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37545153

RESUMO

OBJECTIVE: This study aimed to explore the risk factors of urinary tract infection (UTI) in acute glomerulonephritis (AGN) children. METHODS: It selected 175 children (86 cases with AGN and 89 cases with AGN and UTI) in Yantai Mountain Hospital from January 2021 to January 2022 for clinical research, comparatively analysed the clinical data, such as urine protein, serum protein, cholesterol, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), low-density lipoprotein (LDL), high-density lipoprotein (HDL) and lipoprotein (a) (Lp (a)), and used logistic regression analysis to screen out the independent risk factors of AGN with UTI. RESULTS: The univariate analysis showed that UTI was not related to gender, use of angiotensin converting enzyme inhibitor, cholesterol, HDL, IgM and immunoglobulin A (p > 0.05) but related to age, dosage of dopamine, urine protein, serum protein, LDL, IgG and Lp (a) (p < 0.05). The multivariate logistic regression analysis indicated that age, dosage of dopamine ≥3 µg/kg/min, urine protein, serum protein, LDL, IgG and Lp (a) were independent risk factors of UTI in AGN children. CONCLUSIONS: Age, dosage of dopamine, urine protein, serum protein, LDL, IgG and Lp (a) were correlated with the occurrence and development of UTI. The use of high-dose dopamine in younger children could lead to higher levels of urinary protein, LDL and Lp (a), resulting in a higher risk of UTI in AGN patients with lower levels of serum protein and IgG. Therefore, attention should be paid to such patients, and intervention measures should be taken promptly in clinic.


Assuntos
Glomerulonefrite , Infecções Urinárias , Humanos , Criança , Estudos Transversais , Dopamina , Infecções Urinárias/etiologia , Fatores de Risco , Doença Aguda , Glomerulonefrite/complicações , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
15.
Environ Sci Pollut Res Int ; 30(27): 71171-71183, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160856

RESUMO

Environmental factors, such as drinking water and diets, play an important role in the development of inflammatory bowel disease (IBD). This study aimed to investigate the associations of metal elements and disinfectants in drinking water with the risk of inflammatory bowel disease (IBD) and to assess whether diet influences these associations. We conducted a prospective cohort study including 22,824 participants free from IBD from the Yinzhou cohort study in the 2016-2022 period with an average follow-up of 5.24 years. The metal and disinfectant concentrations were measured in local pipeline terminal tap water samples. Cox regression models adjusted for multi-level covariates were used to estimate adjusted hazard ratios (aHRs) and 95% confidence intervals (95% CIs). During an average follow-up period of 5.24 years, 46 cases of IBD were identified. For every 1 standard deviation (SD) increase in the concentration of manganese, mercury, selenium, sulfur tetraoxide (SO4), chlorine, and nitrate nitrogen (NO3_N) were associated with a higher risk of IBD with the HRs of 1.45 (95% CI: 1.14 to 1.84), 1.51 (95% CI: 1.24-1.82), 1.29 (95% CI: 1.03-1.61), 1.52 (95% CI: 1.26-1.83), 1.26 (95% CI: 1.18-1.34), and 1.66 (95% CI: 1.32-2.09), whereas zinc and fluorine were inversely associated with IBD with the HRs of 0.42 (95% CI: 0.24 to 0.73) and 0.68 (95% CI: 0.54-0.84), respectively. Stronger associations were observed in females, higher income groups, low education groups, former drinkers, and participants who never drink tea. Diets have a moderating effect on the associations of metal and nonmetal elements with the risk of IBD. We found significant associations between exposure to metals and disinfectants and IBD. Diets regulated the associations to some extent.


Assuntos
Água Potável , Doenças Inflamatórias Intestinais , Feminino , Humanos , Estudos de Coortes , Estudos Prospectivos , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/complicações , Qualidade da Água , Fatores de Risco
16.
Chemosphere ; 333: 138834, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37142100

RESUMO

Natural organic matter (NOM) plays an important role in the iodine mobilization in the groundwater system. In this study, the groundwater and sediments from iodine affected aquifers in the Datong Basin were collected to perform chemistry analysis and molecular characteristics of NOM by Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Total iodine concentrations in groundwater and sediments ranged from 1.97 to 926.1 µg/L and 0.001-2.86 µg/g, respectively. A positive correlation was observed between DOC/NOM and groundwater/sediment iodine. FT-ICR-MS results showed that the DOM in the high-iodine groundwater system is characterized by less aliphatic and more aromatic compounds with higher NOSC, indicating the features of more unsaturated larger molecule structures and more bioavailability. Aromatic compounds could be the main carriers of sediment iodine and were easily absorbed on amorphous iron oxides to form the NOM-Fe-I complex. More aliphatic compounds, especially those containing N/S, experienced a higher degree of biodegradation, which further mediated the reductive dissolution of amorphous iron oxides and the transformation of iodine species, thereby causing the release of iodine into groundwater. The findings of this study provide some new insights into the mechanisms of high-iodine groundwater.


Assuntos
Arsênio , Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Água Subterrânea/química , China , Ferro/análise , Óxidos/análise , Arsênio/análise
18.
Biotechnol Genet Eng Rev ; : 1-25, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942591

RESUMO

Seed cells and scaffold materials are essential components of tissue engineering. In this study, we investigated the key pathway of the zirconia/dental pulp stem cell composite scaffold in regulating macrophage polarization by transcriptome sequencing. We established N-rGO/ZrO2 composite scaffold and confirmed its structure using various analytical techniques, including SEM, TEM, FTIR, Raman spectra, XPS, and XRD. DPSCs were seeded onto N-rGO/ZrO2 composite scaffold material, and their proliferation, adhesion, and osteogenic differentiation were evaluated by CCK-8, immunofluorescence staining, ALP staining, and alizarin red staining. We then co-cultured DPSCs combined with N-rGO/ZrO2 as composite material with THP-1 cells in a transwell system to investigate the effect of the composite on macrophage polarization. The levels of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes were assessed by RT-qPCR and western blot. Through bulk RNA sequencing, we detected the transcriptional characteristics of macrophages under the regulation of the composite materials, and identified the differential genes using the DEseq2 package. We also analyzed the cellular and molecular functions of differentially expressed genes (DEGs) in THP-1 cells with DPSCs combined with N-rGO/ZrO2 treatment using GO enrichment analysis and KEGG pathway enrichment analysis. Our results showed that N-rGO/ZrO2 composite scaffold promoted the proliferation, adhesion, and osteogenic differentiation of DPSCs. Moreover, N-rGO/ZrO2 composite scaffold combined with DPSCs regulated macrophage migration, polarization, and glycolysis. Mechanistically, the combination of N-rGO/ZrO2 composite materials and DPSCs regulated macrophage polarization by activating the TNF signaling pathway. This finding provides a new approach to the clinical preservation of maxillofacial bone defect repair.

19.
Environ Sci Pollut Res Int ; 30(17): 50661-50674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800089

RESUMO

Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper proposes a hybrid random forest linear model (HRFLM) as a novel approach for estimating groundwater fluoride contamination. Light gradient boosting (LightGBM), random forest (RF), and extreme gradient boosting (Xgboost) were also employed in comparison with HRFLM for predicting fluoride contamination in groundwater. 202 groundwater samples were collected to draw up the performance capability of several models in forecasting subsurface water fluoride contamination. The performance of the models was assessed utilizing the receiver operating characteristic (ROC) area under the curve (AUC) and the confusion matrix (CM). The CM results reveal that with nine predictor variables, the hybrid HRFLM achieved an accuracy of 95%, outperforming the Xgboost, LightGBM, and RF models, which attained 88%, 88%, and 85%, respectively. Likewise, the AUC results of the hybrid HRFLM show high performance with an AUC of 0.98 compared to Xgboost, LightGBM, and RF, which achieved an AUC of 0.95, 0.90, and 0.88, respectively. The study demonstrates that the HRFLM can be applied as an advanced approach for groundwater fluoride contamination prediction in the Datong basin and could be adopted in various areas facing a similar challenge.


Assuntos
Fluoretos , Água Subterrânea , Fluoretos/análise , Modelos Lineares , Monitoramento Ambiental/métodos , Algoritmo Florestas Aleatórias , Água Subterrânea/análise
20.
Ann Transl Med ; 11(2): 90, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819570

RESUMO

Background: Periodontitis is a major oral condition and current treatment outcomes can be unsatisfactory. Macrophages are essential to the regeneration process, so we investigated the influence of human dental pulp stem cells (hDPSCs) on macrophage differentiation and the microenvironment and the underlying mechanism. Methods: hDPSCs were isolated from healthy third molars extracted from patients undergoing maxillofacial surgery. The surface antigens CD73, CD45, CD90 and CD11b of the hDPSCs were detected using flow cytometry. hDPSCs were induced for osteogenic and adipogenic differentiation, and the outcome was assessed by alizarin red staining or Oil Red O staining. The IL-6 level released by hDPSCs was measured by enzyme linked immunosorbent assay (ELISA). Tohoku Hospital Pediatrics-1 (THP-1) cells were cultured and induced into macrophages by phorbol-12-myristate-13-acetate. After coculture of THP-1-derived macrophages with hDPSCs, interleukin 6 (IL-6), Argininase-1 (Arg-1), Mannose receptor C-1 (Mrc-1), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) levels in the medium were measured using ELISA and quantificational RT-PCR (qRT-PCR). The numbers of CD80+ and CD163+ macrophages were counted by immunofluorescence, and GP130/STAT3 signaling protein expression was detected. After coculturing the culture medium of hDPSCs with human bone marrow stem cells (BMSCs), scratch assays and transwell assays were performed to evaluate cell migration and invasion. Results: Alkaline phosphatase (ALP) staining, alizarin red staining, and western blots were performed to assess osteoblast differentiation. The hDPSCs were positive for surface antigens CD73 and CD90 and negative for CD45 and CD11b expression. The level of IL-6 secreted by hDPSCs significantly increased the number of CD80+ cells as well as the levels of Arg-1 and Mrc-1. It also promoted M2 macrophage polarization and activated GP130/STAT3 signaling. However, the medium cocultured with THP-1-derived macrophages by hDPSCs facilitated the migration, invasion, and osteogenic abilities of human bone marrow-derived stem cells (hBMSCs). Conclusions: hDPSCs can regulate the periodontal microenvironment through IL-6 by inducing phenotypic transformation of M2 macrophages and stimulating osteogenic differentiation of BMSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA