Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277395

RESUMO

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Assuntos
Hemípteros , Inseticidas , Lipossomos , Sesquiterpenos Policíclicos , Animais , Hemípteros/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
2.
Theranostics ; 14(13): 5316-5335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267778

RESUMO

Background: Enhancing white adipose tissue (WAT) browning combats obesity. The RIIß subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIß gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored. Methods: This study investigates the mechanisms underlying WAT browning in RIIß-KO mice. Genetic approaches such as ß3-adrenergic receptors (ß3ARs) deletion and sympathetic denervation of WAT were utilized. Genome-wide transcriptomic sequencing and bioinformatic analysis were employed to identify potential mediators of WAT browning. siRNA assays were employed to knock down mTOR and lipin1 in vitro, while AAV-shRNAs were used for the same purpose in vivo. Results: We found that WAT browning substantially contributes to the lean and obesity-resistant phenotypes of RIIß-KO mice. The WAT browning can be dampened by ß3ARs deletion or WAT sympathetic denervation. We identified that adipocytic mTOR and lipin1 may act as mediators of the WAT browning. Inhibition of mTOR or lipin1 abrogates WAT browning and hinders the lean phenotype of RIIß-KO mice. In human subcutaneous white adipocytes and mouse white adipocytes, ß3AR stimulation can activate mTOR and causes lipin1 nuclear translocation; knockdown of mTOR and Lipin1 mitigates WAT browning-associated gene expression, impedes mitochondrial activity. Moreover, mTOR knockdown reduces lipin1 level and nuclear translocation, indicating that lipin1 may act downstream of mTOR. Additionally, in vivo knockdown of mTOR and Lipin1 diminished WAT browning and increased adiposity. Conclusions: The ß3AR-activated mTOR-lipin1 axis mediates WAT browning, offering new insights into the molecular basis of PKA-regulated WAT browning. These findings provide potential adipose target candidates for the development of drugs to treat obesity.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Camundongos Knockout , Fosfatidato Fosfatase , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Obesidade/metabolismo , Obesidade/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais , Masculino , Camundongos Endogâmicos C57BL , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
3.
Acta Pharmacol Sin ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043970

RESUMO

Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.

4.
Nat Metab ; 6(7): 1310-1328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877143

RESUMO

Non-small-cell lung cancer (NSCLC) with concurrent mutations in KRAS and the tumour suppressor LKB1 (KL NSCLC) is refractory to most therapies and has one of the worst predicted outcomes. Here we describe a KL-induced metabolic vulnerability associated with serine-glycine-one-carbon (SGOC) metabolism. Using RNA-seq and metabolomics data from human NSCLC, we uncovered that LKB1 loss enhanced SGOC metabolism via serine hydroxymethyltransferase (SHMT). LKB1 loss, in collaboration with KEAP1 loss, activated SHMT through inactivation of the salt-induced kinase (SIK)-NRF2 axis and satisfied the increased demand for one-carbon units necessary for antioxidant defence. Chemical and genetic SHMT suppression increased cellular sensitivity to oxidative stress and cell death. Further, the SHMT inhibitor enhanced the in vivo therapeutic efficacy of paclitaxel (first-line NSCLC therapy inducing oxidative stress) in KEAP1-mutant KL tumours. The data reveal how this highly aggressive molecular subtype of NSCLC fulfills their metabolic requirements and provides insight into therapeutic strategies.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Antioxidantes , Carcinoma Pulmonar de Células não Pequenas , Glicina Hidroximetiltransferase , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Mutação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras) , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antioxidantes/metabolismo , Animais , Estresse Oxidativo , Camundongos , Linhagem Celular Tumoral , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
5.
Micromachines (Basel) ; 15(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793227

RESUMO

Elastic spherical polishing tools effectively conform to the polishing surface and exhibit high efficiency in the removal of materials, so they are extensively used in the sub-aperture polishing stages of optical components. However, their processing is often accompanied by significant mid-spatial frequency (MSF) errors, which critically degrade the performance of optical systems. To suppress the MSF errors generated during polishing with spherical tools, this study investigates the influence factor of MSF errors during the polishing process through an analysis of the convolution effect in material removal. A material removal profile model is established, and a uniform removal simulation is conducted to assess the influence of different shape material removal profiles on MSF errors. Simulation and experimental results show that a Gaussian-like shape material removal profile is more effective in suppressing the MSF errors during polishing compared to the "W" and trapezoidal shape material removal profiles. In addition, based on the characteristics of the RMS decreasing in a serrated trend with the decrease in path spacing, a path spacing optimization method considering the polishing efficiency is proposed to improve the polishing efficiency while controlling the MSF errors, and the effectiveness of the path spacing optimization method is verified by comparing the MSF error at the maximum theoretical path spacing and the path spacing that is less than this. Finally, the path spacing optimization method is used to polish single-crystal silicon to further illustrate its practicality.

6.
Nat Biomed Eng ; 8(9): 1162-1176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38514773

RESUMO

The killing function of cytotoxic T cells can be enhanced biochemically. Here we show that blocking the mechanical sensor PIEZO1 in T cells strengthens their traction forces and augments their cytotoxicity against tumour cells. By leveraging cytotoxic T cells collected from tumour models in mice and from patients with cancers, we show that PIEZO1 upregulates the transcriptional factor GRHL3, which in turn induces the expression of the E3 ubiquitin ligase RNF114. RNF114 binds to filamentous actin, causing its downregulation and rearrangement, which depresses traction forces in the T cells. In mice with tumours, the injection of cytotoxic T cells collected from the animals and treated with a PIEZO1 antagonist promoted their infiltration into the tumour and attenuated tumour growth. As an immunomechanical regulator, PIEZO1 could be targeted to enhance the outcomes of cancer immunotherapies.


Assuntos
Canais Iônicos , Linfócitos T Citotóxicos , Animais , Canais Iônicos/metabolismo , Humanos , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Feminino
7.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400075

RESUMO

Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Limoneno , Simulação de Acoplamento Molecular , Insetos Vetores , Doenças das Plantas/prevenção & controle , Comportamento Alimentar
8.
Protein Cell ; 15(1): 6-20, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37233789

RESUMO

Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.


Assuntos
DNA Circular , Neoplasias dos Genitais Femininos , Masculino , Feminino , Animais , Humanos , Suínos , DNA Circular/genética , Sêmen , DNA , Reprodução
9.
Food Chem X ; 19: 100854, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780331

RESUMO

In this study, the fate, processing factors and relationship with physicochemical properties of thirteen pesticides in field-collected pepper samples during Chinese chopped pepper and chili powder production was systematically studied. The washing, air-drying, chopping and salting and fermentation processes reduced 24.8%-62.8%, 0.9%-26.4%, 25.1%-50.3% and 16.3%-90.0% of thirteen pesticide residues, respectively, while the sun-drying processing increased the residues of eleven pesticides by 1.27-5.19 fold. The PFs of thirteen pesticides were < 1 in chopped pepper production and the PFs of eleven pesticides were more than 1 for chili powder production. The chopped pepper processing efficiency have most negative correlation with octanol-water partition coefficient. In contrast, the chili powder processing efficiency have most positive correlation with vapour pressure. Thus, this study can offer important references for assessment the pesticide residue levels in Chinese traditional fermented chopped pepper and chili powder production from fresh peppers.

10.
Plants (Basel) ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896029

RESUMO

The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.

11.
Breed Sci ; 73(3): 246-260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840976

RESUMO

Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.

12.
Virol J ; 20(1): 189, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620959

RESUMO

BACKGROUND: The emergence of COVID-19 and the implementation of preventive measures and behavioral changes have led to a significant decrease in the prevalence of other respiratory viruses. However, the manner in which seasonal viruses will reemerge in the absence of COVID-19-related restrictions remains unknown. METHODS: Patients presenting with influenza-like illness in two hospitals in Beijing were subjected to testing for COVID-19, influenza A, and influenza B to determine the causative agent for viral infections. The prevalence of influenza B across China was confirmed using data from the Centers for Disease Control, China (China CDC). Clinical characteristics, laboratory findings, imaging results, and mortality data were collected for a cohort of 70 hospitalized patients with confirmed influenza B from 9 hospitals across China. RESULTS: Starting from October 2021, a substantial increase in the number of patients visiting the designated fever clinics in Beijing was observed, with this trend continuing until January 2022. COVID-19 tests conducted on these patients yielded negative results, while the positivity rate for influenza rose from approximately 8% in October 2021 to over 40% by late January 2022. The cases started to decline after this peak. Data from China CDC confirmed that influenza B is a major pathogen during the season. Sequencing of the viral strain revealed the presence of the Victoria-like lineage of the influenza B strain, with minor variations from the Florida/39/2018 strain. Analysis of the hospitalized patients' characteristics indicated that severe cases were relatively more prevalent among younger individuals, with an average age of 40.9 ± 24.1 years. Among the seven patients who succumbed to influenza, the average age was 30 ± 30.1 years. These patients exhibited secondary infections involving either bacterial or fungal pathogens and displayed elevated levels of cell death markers (such as LDH) and coagulation pathway markers (D-dimer). CONCLUSION: Influenza B represents a significant infection threat and can lead to substantial morbidity and mortality, particularly among young patients. To mitigate morbidity and mortality rates, it is imperative to implement appropriate vaccination and other preventive strategies.


Assuntos
COVID-19 , Influenza Humana , Humanos , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Idoso , Influenza Humana/epidemiologia , COVID-19/epidemiologia , Estações do Ano , Teste para COVID-19 , China/epidemiologia
13.
Cell Death Dis ; 14(8): 527, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587140

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality worldwide. Although the dysregulation of BARX1 expression has been shown to be associated with malignant cancers, including NSCLC, the underlying mechanism remains elusive. In this study, we identified BARX1 as a common differentially expressed gene in lung squamous cell carcinoma and adenocarcinoma. Importantly, we uncovered a novel mechanism behind the regulation of BARX1, in which ZFP36 interacted with 3'UTR of BARX1 mRNA to mediate its destabilization. Loss of ZFP36 led to the upregulation of BARX1, which further promoted the proliferation, migration and invasion of NSCLC cells. In addition, the knockdown of BARX1 inhibited tumorigenicity in mouse xenograft. We demonstrated that BARX1 promoted the malignant phenotypes by transactivating a set of master oncogenes involved in the cell cycle, DNA synthesis and metastasis. Overall, our study provides insights into the mechanism of BARX1 actions in NSCLC and aids a better understanding of NSCLC pathogenesis.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Homeodomínio , Neoplasias Pulmonares , Fatores de Transcrição , Tristetraprolina , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Oncogenes , Fenótipo , Fatores de Transcrição/genética , Tristetraprolina/genética
15.
Cell Death Dis ; 14(7): 431, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452033

RESUMO

Pancreatic cancer is a leading cause of cancer death due to its early metastasis and limited response to the current therapies. Metastasis is a complicated multistep process, which is determined by complex genetic alterations. Despite the identification of many metastasis-related genes, distinguishing the drivers from numerous passengers and establishing the causality in cancer pathophysiology remains challenging. Here, we established a high-throughput and piggyBac transposon-based genetic screening platform, which enables either reduced or increased expression of chromosomal genes near the incorporation site of the gene search vector cassette that contains a doxycycline-regulated promoter. Using this strategy, we identified YWHAZ as a key regulator of pancreatic cancer metastasis. We demonstrated that functional activation of Ywhaz by the gene search vector led to enhanced metastatic capability in mouse pancreatic cancer cells. The metastasis-promoting role of YWHAZ was further validated in human pancreatic cancer cells. Overexpression of YWHAZ resulted in more aggressive metastatic phenotypes in vitro and a shorter survival rate in vivo by modulating epithelial-to-mesenchymal transition. Hence, our study established a high-throughput screening method to investigate the functional relevance of novel genes and validated YWHAZ as a key regulator of pancreatic cancer metastasis.


Assuntos
Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Metástase Neoplásica , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Neoplasias Pancreáticas
17.
J Environ Manage ; 344: 118440, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343477

RESUMO

Peroxymonosulfate (PMS)-mediated advanced oxidation processes gain growing attention in degrading antibiotics (e.g., tetracycline (TC)) in wastewater for their high capacity and relatively low cost, while designing efficient catalysts for PMS activation remains a challenge. In this study, a sulfur-doped Fe/C catalyst (Fe@C-S) synthesized from iron metal-organic frameworks (Fe-MOFs) was developed for PMS activation towards TC removal. Under optimal conditions, the TC removal efficiency of Fe@C-S150/PMS system within 40 min was 91.2%. Meanwhile, the k value for Fe@C-S150/PMS system (0.2038 min-1) was 3.36-fold as high as the S-free Fe@C-based PMS system. Also, Fe@C-S150/PMS system showed high robustness in different water matrices. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer). Fe nanoparticles, S and CO groups on the catalyst all participated in the generation of reactive oxygen species (ROS). Besides, S species could enhance the Fe2+/Fe3+ redox cycle and accelerate the electron transfer process. This work highlights the critical role of S in enhancing the catalytic performance of Fe/C-based catalysts for PMS activation, which would provide meaningful insights into the design of high-performance PMS activators for the sustainable remediation of emerging contaminants-polluted water bodies.


Assuntos
Antibacterianos , Tetraciclina , Domínio Catalítico , Peróxidos , Enxofre , Água
18.
Front Physiol ; 14: 1166685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153213

RESUMO

Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.

19.
Front Physiol ; 14: 1123583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008006

RESUMO

The nuclear receptors HR3 and FTZ-F1 are highly conserved and function to regulate molting and reproduction in both hemimetabolous and holometabolous insects. However, their roles in Nilaparvata lugens are largely unknown. In the present study, we discover that NlHR3 and NlFTZ-F1 are activated in the nymph stages by ecdysone signaling. Transcription disruption of NlHR3 and NlFTZ-F1 expression prevents nymph ecdysis and metamorphosis, which leads to abnormal appearance, malformed ovaries, and lethal phenotypes. In addition, we demonstrate that NlHR3 and NlFTZ-F1 regulate molting and reproduction by interacting with the intrinsic 20E and JH signaling pathways. Our work offers a deep insight into the action mechanisms of HR3 and FTZ-F1 in insects. Moreover, NlHR3 and NlFTZ-F1 could properly be exploited as potential target genes for developing RNAi-based pesticides to control N. lugens.

20.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 2089-2100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018301

RESUMO

Effectively and accurately predicting the effects of interactions between proteins after amino acid mutations is a key issue for understanding the mechanism of protein function and drug design. In this study, we present a deep graph convolution (DGC) network-based framework, DGCddG, to predict the changes of protein-protein binding affinity after mutation. DGCddG incorporates multi-layer graph convolution to extract a deep, contextualized representation for each residue of the protein complex structure. The mined channels of the mutation sites by DGC is then fitted to the binding affinity with a multi-layer perceptron. Experiments with results on multiple datasets show that our model can achieve relatively good performance for both single and multi-point mutations. For blind tests on datasets related to angiotensin-converting enzyme 2 binding with the SARS-CoV-2 virus, our method shows better results in predicting ACE2 changes, may help in finding favorable antibodies. Code and data availability: https://github.com/lennylv/DGCddG.


Assuntos
COVID-19 , Humanos , Ligação Proteica/genética , COVID-19/genética , SARS-CoV-2/genética , Mutação/genética , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA