Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2970, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582759

RESUMO

Photoelectrochemical seawater splitting is a promising route for direct utilization of solar energy and abundant seawater resources for H2 production. However, the complex salinity composition in seawater results in intractable challenges for photoelectrodes. This paper describes the fabrication of a bilayer stack consisting of stainless steel and TiO2 as a cocatalyst and protective layer for Si photoanode. The chromium-incorporated NiFe (oxy)hydroxide converted from stainless steel film serves as a protective cocatalyst for efficient oxygen evolution and retarding the adsorption of corrosive ions from seawater, while the TiO2 is capable of avoiding the plasma damage of the surface layer of Si photoanode during the sputtering of stainless steel catalysts. By implementing this approach, the TiO2 layer effectively shields the vulnerable semiconductor photoelectrode from the harsh plasma sputtering conditions in stainless steel coating, preventing surface damages. Finally, the Si photoanode with the bilayer stack inhibits the adsorption of chloride and realizes 167 h stability in chloride-containing alkaline electrolytes. Furthermore, this photoanode also demonstrates stable performance under alkaline natural seawater for over 50 h with an applied bias photon-to-current efficiency of 2.62%.

2.
Cell Mol Life Sci ; 81(1): 82, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340178

RESUMO

Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor , Evasão da Resposta Imune/genética
3.
J Cancer Res Clin Oncol ; 149(17): 16123-16146, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640846

RESUMO

BACKGROUND: The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE: In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS: The relevant literatures from PubMed have been reviewed for this article. CONCLUSION: The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.


Assuntos
Neoplasias , Sumoilação , Humanos , Ubiquitinação , Processamento de Proteína Pós-Traducional , Proteínas/genética
4.
JACS Au ; 3(2): 508-515, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873681

RESUMO

Cobalt oxide (CoO x ) catalysts are widely applied in CO2 hydrogenation but suffer from structural evolution during the reaction. This paper describes the complicated structure-performance relationship under reaction conditions. An iterative approach was employed to simulate the reduction process with the help of neural network potential-accelerated molecular dynamics. Based on the reduced models of catalysts, a combined theoretical and experimental study has discovered that CoO(111) provides active sites to break C-O bonds for CH4 production. The analysis of the reaction mechanism indicated that the C-O bond scission of *CH2O species plays a key role in producing CH4. The nature of dissociating C-O bonds is attributed to the stabilization of *O atoms after C-O bond cleavage and the weakening of C-O bond strength by surface-transferred electrons. This work may offer a paradigm to explore the origin of performance over metal oxides in heterogeneous catalysis.

5.
Nat Commun ; 13(1): 7909, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564379

RESUMO

Electroreductive coupling of biomass-derived benzaldehyde offers a sustainable approach to producing value-added hydrobenzoin. The low efficiency of the reaction mainly ascribes to the mismatch of initial formation and subsequent dimerization of ketyl intermediates (Ph-CH = O → Ph-C·-OH → Ph-C(OH)-C(OH)-Ph). This paper describes a strategy to balance the active sites for the generation and dimerization of ketyl intermediates by constructing bimetallic Pd/Cu electrocatalysts with tunable surface coverage of Pd. A Faradaic efficiency of 63.2% and a hydrobenzoin production rate of up to 1.27 mmol mg-1 h-1 (0.43 mmol cm-2 h-1) are achieved at -0.40 V vs. reversible hydrogen electrode. Experimental results and theoretical calculations reveal that Pd promotes the generation of the ketyl intermediate, and Cu enhances their dimerization. Moreover, the balance between these two sites facilitates the coupling of benzaldehyde towards hydrobenzoin. This work offers a rational strategy to design efficient electrocatalysts for complex reactions through the optimization of specified active sites for different reaction steps.

6.
Gene ; 809: 146028, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34687788

RESUMO

Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.


Assuntos
Neoplasias/patologia , Neoplasias/terapia , Proteínas Nucleares/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Masculino , Terapia de Alvo Molecular/métodos , Proteínas Nucleares/química , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA