Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709279

RESUMO

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Assuntos
Análise Espectral Raman , Plásticos , Nanopartículas , Cloreto de Sódio/química
2.
Phytomedicine ; 130: 155549, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38810551

RESUMO

Premenstrual dysphoric disorder (PMDD) is a severe subtype of premenstrual syndrome in women of reproductive age, with its pathogenesis linked to the heightened sensitivity of type A γ -aminobutyric acid receptors (GABAAR) to neuroactive steroid hormone changes, particularly allopregnanolone (ALLO). While a low dose of fluoxetine, a classic selective serotonin reuptake inhibitor, is commonly used as a first-line drug to alleviate emotional disorders in PMDD in clinical settings, its mechanism of action is related to ALLO-GABAA receptor function. However, treating PMDD requires attention to both emotional and physical symptoms, such as pain sensitivity. This study aims to investigate the efficacy of ShuYu capsules, a traditional Chinese medicine, in simultaneously treating emotional and physical symptoms in a rat model of PMDD. Specifically, our focus centres on the midbrain periaqueductal grey (PAG), a region associated with emotion regulation and susceptibility to hyperalgesia. Considering the underlying mechanisms of ALLO-GABAA receptor function in the PAG region, we conducted a series of experiments to evaluate and define the effects of ShuYu capsules and uncover the relationship between the drug's efficacy and ALLO concentration fluctuations on GABAA receptor function in the PAG region. Our findings demonstrate that ShuYu capsules significantly improved oestrous cycle-dependant depression-like behaviour and reduced stress-induced hyperalgesia in rats with PMDD. Similar to the low dose of fluoxetine, ShuYu capsules targeted and mitigated the sharp decline in ALLO, rescued the upregulation of GABAAR subunit function, and activated PAG neurons in PMDD rats. The observed effects of ShuYu capsules suggest a central mechanism underlying PMDD symptoms, involving ALLO_GABAA receptor function in the PAG region. This study highlights the potential of traditional Chinese medicine in addressing both emotional and physical symptoms associated with PMDD, shedding light on novel therapeutic approaches for this condition.

3.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641555

RESUMO

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Assuntos
Bismuto , Compostos Férricos , Luz , Norfloxacino , Peróxidos , Vanadatos , Vanadatos/química , Vanadatos/efeitos da radiação , Bismuto/química , Norfloxacino/química , Norfloxacino/efeitos da radiação , Catálise/efeitos da radiação , Compostos Férricos/química , Peróxidos/química , Processos Fotoquímicos , Triticum/química , Triticum/efeitos da radiação
4.
PLoS One ; 19(3): e0299566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489279

RESUMO

BACKGROUND: Dietary phosphorus intake may serve as a potential predictor for peripheral neuropathy (PN). While past research has predominantly focused on the relationship between dietary phosphorus and bone health, relatively little is known about its role in the nervous system, particularly its association with PN. METHODS: A cross-sectional study was conducted using data from NHANES 1999-2004. Participants were categorized into different dietary phosphorus intake groups, and the relationship between dietary phosphorus and PN was explored using multifactorial logistic regression, restricted cubic splines (RCS) analysis, and threshold effect analysis based on dietary intake. RESULTS: The final study included 7726 participants, with 1378 diagnosed with PN and 6348 without. The study revealed a U-shaped non-linear relationship between dietary calcium and magnesium intake levels and PN, indicating that both excessive and insufficient dietary phosphorus intake may increase the risk of PN. Specifically, the incidence rates in the first quintile (1.433, 95% CI: 1.080-1.901), the fourth quintile (1.284, 95% CI: 1.000-1.648), and the fifth quintile (1.533, 95% CI: 1.155-2.035) significantly higher than the second quintile, with an overall trend showing a decrease followed by an increase in incidence rates. The results of RCS and threshold effect analysis indicate that when dietary phosphorus intake is below 939.44mg, the risk of PN decreases with increasing dietary phosphorus intake. On the contrary, when dietary phosphorus intake exceeds 939.44mg, the risk of PN increases with increasing dietary phosphorus intake. CONCLUSION: This study reveals a U-shaped correlation between dietary phosphorus intake and PN. Future research should further elucidate the molecular mechanisms underlying this association, providing guidance for more scientifically informed dietary adjustments to prevent the occurrence of PN.


Assuntos
Doenças do Sistema Nervoso Periférico , Fósforo na Dieta , Humanos , Estados Unidos/epidemiologia , Fósforo na Dieta/efeitos adversos , Estudos Transversais , Inquéritos Nutricionais , Dieta/efeitos adversos , Fósforo
5.
J Am Chem Soc ; 146(10): 6580-6590, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427385

RESUMO

The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.

6.
RSC Med Chem ; 15(2): 492-505, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389880

RESUMO

Invasive fungal infections, with high morbidity and mortality, have become one of the most serious threats to human health. There are a few kinds of clinical antifungal drugs but large amounts of them are used, so there is an urgent need for a new structural type of antifungal drug. In this study, we carried out three rounds of structural optimisation and modification of the compound YW-01, which was obtained from the preliminary screening of the group, by using the strategy of scaffold hopping. A series of novel phenylpyrimidine CYP51 inhibitors were designed and synthesised. In vitro antifungal testing showed that target compound C6 exhibited good efficacy against seven common clinically susceptible strains, which was significantly superior to the clinical first-line drug fluconazole. Subsequently in vitro tests on metabolic stability and cytotoxicity revealed that C6 was safe and stable for hepatic microsomal function. Finally, C6 warranted further exploration as a possible novel structural type of CYP51 inhibitor.

7.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396847

RESUMO

Schima superba is a precious timber and fire-resistant tree species widely distributed in southern China. Currently, there is little knowledge related to its growth traits, especially with respect to molecular breeding. The lack of relevant information has delayed the development of modern breeding. The purpose is to identify probable functional genes involved in S. superba growth through whole transcriptome sequencing. In this study, a total of 32,711 mRNAs, 525 miRNAs, 54,312 lncRNAs, and 1522 circRNAs were identified from 10 S. superba individuals containing different volumes of wood. Four possible regulators, comprising three lncRNAs, one circRNA, and eleven key miRNAs, were identified from the regulatory networks of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA to supply information on ncRNAs. Several candidate genes involved in phenylpropane and cellulose biosynthesis pathways, including Ss4CL2, SsCSL1, and SsCSL2, and transcription factors, including SsDELLA2 (SsSLR), SsDELLA3 (SsSLN), SsDELLA5 (SsGAI-like2), and SsNAM1, were identified to reveal the molecular regulatory mechanisms regulating the growth traits of S. superba. The results not merely provide candidate functional genes related to S. superba growth trait and will be useful to carry out molecular breeding, but the strategy and method also provide scientists with an effective approach to revealing mechanisms behind important economic traits in other species.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , Melhoramento Vegetal , Redes Reguladoras de Genes
8.
Environ Sci Technol ; 57(50): 21448-21458, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047763

RESUMO

The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 µg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Água , Caprilatos/química , Poluentes Químicos da Água/química
9.
PNAS Nexus ; 2(11): pgad389, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034096

RESUMO

The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.

10.
Pathogens ; 12(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37887711

RESUMO

The detection of hepatitis E virus (HEV) RNA is the gold standard for HEV infection diagnosis. In order to address the quality control requirements for HEV RNA detection kits within China, we aimed to establish the first Chinese national standard for HEV RNA detection through a collaborative study. The candidate standard was quantified using digital PCR (dPCR). A total of five laboratories were invited to determine the estimated mean value of this national standard relative to the World Health Organization International Standard (WHO IS). Additionally, four commercial kits were used to assess the applicability of the candidate standard. The stability was determined by freeze-thaw cycles and storage at 37 °C, 25 °C and 4 °C. The estimated mean value of this national standard relative to the WHO IS was 5.67 log10 IU/mL. Two out of the four commercial kits can detect as low as the estimated limit of detection (LOD). The degradation rates of samples in the stability study ranged from 4% to 19%. In conclusion, we have established the first Chinese national standard for HEV nucleic acid detection against WHO IS, which can be employed to evaluate the quality of HEV RNA detection kits.

11.
Materials (Basel) ; 16(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763571

RESUMO

The formation and evolution of microstructures at the Ni/Fe interface in dissimilar metal weld (DMW) between ferritic steel and austenitic stainless steel were investigated. Layered martensitic structures were noted at the nickel-based weld metal/12Cr2MoWVTiB steel interface after welding and post-weld heat treatment (PWHT). The formation of the interfacial martensite layer during welding was clarified and its evolution during PWHT was discussed by means of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), electron probe microanalysis (EPMA), focused ion beam (FIB), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), transmission kikuchi diffraction (TKD), phase diagrams, and theoretical analysis. In as-welded DMW, the Ni/Fe interface structures consisted of the BCC quenched martensite layer and the FCC partially mixed zone (PMZ), which was the result of inhomogeneous solid phase transformation due to the chemical composition gradient. During the PWHT process, the BCC interfacial microstructure further evolved to a double-layered structure of tempered martensite and quenched martensite newly formed by local re-austenitization and austenite-martensite transformation. These types of martensitic structures induced inhomogeneous hardness distribution near the Ni/Fe interface, aggravating the mismatch of interfacial mechanical properties, which was a potential factor contributing to the degradation and failure of DMW.

12.
Medicine (Baltimore) ; 102(36): e35132, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682125

RESUMO

Anger and aggression are common sources of distress and impairment. There is, however, no available data on anger and aggression based on bibliometric analysis. This study uses bibliometric analysis to analyze research hotspots and trends in anger and aggression. Publications on anger and aggression within the last ten years were collected from the Web of Science Core Collection. Using descriptive bibliometrics, journals, countries, institutions, authors, references, and keywords in anger and aggression research were visually analyzed via CiteSpace. A total of 3114 articles were included, and studies on anger and aggression increased yearly. The publications are mainly from 106 countries led by the USA and 381 institutions led by Univ Penn. We identified 505 authors, where Emil F. Coccaro had the highest number of articles, while Buss A.H. was the most frequently co-cited author. AGGRESSIVE BEHAVIOR is the journal that bore most of the studies, while PLOS ONE was the most cited journal. Our analysis demonstrated that research on anger and aggression is flourishing. Behaviors of anger and aggression, risk factors, neural mechanisms, personality, and adolescence have been researched hotspots in the past ten years. Besides, victimization, drosophila melanogaster, psychopathic traits, and perpetration are emerging anger and aggression research trends.


Assuntos
Bullying , Drosophila melanogaster , Animais , Agressão , Ira , Bibliometria
13.
Medicine (Baltimore) ; 102(34): e34846, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653807

RESUMO

BACKGROUND: Xihuang Pills/Capsules have a longstanding history of utilization in traditional Chinese medicine (TCM) for treating cancer. Nevertheless, a comprehensive investigation is required regarding the specific impacts and safety of Xihuang Pills/Capsules in individuals with uterine cervical neoplasms. Thus, conducting a meta-analysis is essential to evaluate the clinical effectiveness of combining Xihuang Pills/Capsules with Western medicine in patients with cervical neoplasms. METHODS: The research involved searching 5 English and 4 Chinese databases for randomized controlled trials (RCTs) investigating the use of Xihuang Pills/Capsules in conjunction with Western medicine for treating uterine cervical neoplasms. Subsequently, statistical analysis was carried out using Review Manager software (version 5.3). RESULTS: This research encompassed 10 RCTs involving 937 patients. The findings revealed that the combination of Xihuang Pills/Capsules with Western medicine treatment led to improvements in various aspects of the patients' condition. Specifically, there was an enhancement in the short-term efficacy rate (risk ratio [RR] = 1.14, 95% confidence interval [CI]: 1.06-1.22, P = .0003), Karnofsky performance score (KPS) (mean difference [MD] = 5.90, 95% CI: 0.54-11.26, P = .03), survival rates, CD3+, CD3 + CD4+, CD3 + CD8+, CD3-CD56 + cells, and immunoglobulin M in patients with uterine cervical neoplasms. Moreover, the combination treatment resulted in a reduction of adverse reactions, including gastrointestinal reactions (RR = 0.52, 95% CI: 0.42-0.64, P < .00001), radiation proctitis (RR = 0.47, 95% CI: 0.33-0.68, P < .0001), myelosuppression (RR = 0.41, 95% CI: 0.26-0.64, P < .0001), as well as carcinoembryonic antigen (CEA) and squamous cell carcinoma antigen (SCC-Ag) levels. Additionally, the treatment exhibited an inhibitory effect on white blood cells (WBCs) and platelets (PLTs). CONCLUSION: The amalgamation of Xihuang Pills/Capsules with conventional anti-tumor therapy proves to be both effective and safe in the treatment of cervical neoplasms. However, further validation through high-quality RCTs is necessary to substantiate these findings.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Cápsulas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
14.
Environ Sci Technol ; 57(46): 18203-18214, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37399235

RESUMO

The increasing prevalence of nanoplastics in the environment underscores the need for effective detection and monitoring techniques. Current methods mainly focus on microplastics, while accurate identification of nanoplastics is challenging due to their small size and complex composition. In this work, we combined highly reflective substrates and machine learning to accurately identify nanoplastics using Raman spectroscopy. Our approach established Raman spectroscopy data sets of nanoplastics, incorporated peak extraction and retention data processing, and constructed a random forest model that achieved an average accuracy of 98.8% in identifying nanoplastics. We validated our method with tap water spiked samples, achieving over 97% identification accuracy, and demonstrated the applicability of our algorithm to real-world environmental samples through experiments on rainwater, detecting nanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite the challenges of processing low-quality nanoplastic Raman spectra and complex environmental samples, our study demonstrated the potential of using random forests to identify and distinguish nanoplastics from other environmental particles. Our results suggest that the combination of Raman spectroscopy and machine learning holds promise for developing effective nanoplastic particle detection and monitoring strategies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Análise Espectral Raman , Algoritmos , Aprendizado de Máquina , Poliestirenos , Água
15.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155894

RESUMO

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

16.
Angew Chem Int Ed Engl ; 62(27): e202304189, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144910

RESUMO

Solar-driven CO2 reduction reaction (CO2 RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2 RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2 O mediated by microdroplets reaches 2536 µmol h-1 g-1 (vs. 13 µmol h-1 g-1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2 RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.

17.
Scanning ; 2023: 9565903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101707

RESUMO

The retained austenite (RA) in advanced high-strength steels directly affects their plasticity. It is very important for the accurate characterization of their content and types. This paper prepared three specimens with three different Mn contents (1.0%, 1.4%, and 1.7%) that are used to obtain high-strength steel by ultrafast cooling heat treatment. The volume content and distribution of the RA were analysed by an X-ray Debye ring measurement system, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). In addition, the mechanical tensile test provided the tensile properties and elongation of three specimens. It was finally concluded that when the content of Mn increased, the island-type and thin film-type RA both increased, which may effectively improve the plasticity of the martensitic steels.

18.
J Hazard Mater ; 448: 130890, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860065

RESUMO

The ever-increasing NO emission has caused severe environmental issues and adverse effects on human health. Electrocatalytic reduction is regarded as a win-win technology for NO treatment with value-added NH3 generation, but the process is mainly relied on the metal-containing electrocatalysts. Here, we developed metal-free g-C3N4 nanosheets (deposited on carbon paper, named as CNNS/CP) for NH3 synthesis from electrochemical NO reduction under ambient condition. The CNNS/CP electrode afforded excellent NH3 yield rate of 15.1 µmol h-1 cm-2 (2180.1 mg gcat-1 h-1) and Faradic efficiency (FE) of ∼41.5 % at - 0.8 and - 0.6 VRHE, respectively, which were superior to the block g-C3N4 particles and comparable to the most of metal-containing catalysts. Moreover, through adjusting the interface microenvironment of CNNS/CP electrode by hydrophobic treatment, the abundant gas-liquid-solid triphasic interface improved NO mass transfer and availability, which enhanced NH3 production and FE to about 30.7 µmol h-1 cm-2 (4424.2 mg gcat-1 h-1) and 45.6 % at potential of - 0.8 VRHE. This study opens a novel pathway to develop efficient metal-free electrocatalysts for NO electroreduction and highlights the importance of electrode interface microenvironment in electrocatalysis.

19.
World J Clin Cases ; 11(5): 1009-1018, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36874430

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) has been shown to be correlated with hepatocellular carcinoma (HCC) development. However, further investigation is needed to understand how T2DM characteristics affect the prognosis of chronic hepatitis B (CHB) patients. AIM: To assess the effect of T2DM on CHB patients with cirrhosis and to determine the risk factors for HCC development. METHODS: Among the 412 CHB patients with cirrhosis enrolled in this study, there were 196 with T2DM. The patients in the T2DM group were compared to the remaining 216 patients without T2DM (non-T2DM group). Clinical characteristics and outcomes of the two groups were reviewed and compared. RESULTS: T2DM was significantly related to hepatocarcinogenesis in this study (P = 0.002). The presence of T2DM, being male, alcohol abuse status, alpha-fetoprotein > 20 ng/mL, and hepatitis B surface antigen > 2.0 log IU/mL were identified to be risk factors for HCC development in the multivariate analysis. T2DM duration of more than 5 years and treatment with diet control or insulin ± sulfonylurea significantly increased the risk of hepatocarcinogenesis. CONCLUSION: T2DM and its characteristics increase the risk of HCC in CHB patients with cirrhosis. The importance of diabetic control should be emphasized for these patients.

20.
J Phys Chem A ; 127(1): 250-260, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36595358

RESUMO

Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA