Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(2): 102348, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521297

RESUMO

The increasing consumption of ducks and chickens in China demands characterizing carcasses of domestic birds efficiently. Most existing methods, however, were developed for characterizing carcasses of pigs or cattle. Here, we developed a noncontact and automated weighing method for duck carcasses hanging on a production line. A 2D camera with its facilitating parts recorded the moving duck carcasses on the production line. To estimate the weight of carcasses, the images in the acquired dataset were modeled by a convolution neuron network (CNN). This model was trained and evaluated using 10-fold cross-validation. The model estimated the weight of duck carcasses precisely with a mean abstract deviation (MAD) of 58.8 grams and a mean relative error (MRE) of 2.15% in the testing dataset. Compared with 2 widely used methods, pixel area linear regression and the artificial neural network (ANN) model, our model decreases the estimation error MAD by 64.7 grams (52.4%) and 48.2 grams (45.0%). We release the dataset and code at https://github.com/RuoyuChen10/Image_weighing.


Assuntos
Galinhas , Patos , Animais , Suínos , Bovinos , Computadores , Redes Neurais de Computação , China
2.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080868

RESUMO

Small defects on the rails develop fast under the continuous load of passing trains, and this may lead to train derailment and other disasters. In recent years, many types of wireless sensor systems have been developed for rail defect detection. However, there has been a lack of comprehensive reviews on the working principles, functions, and trade-offs of these wireless sensor systems. Therefore, we provide in this paper a systematic review of recent studies on wireless sensor-based rail defect detection systems from three different perspectives: sensing principles, wireless networks, and power supply. We analyzed and compared six sensing methods to discuss their detection accuracy, detectable types of defects, and their detection efficiency. For wireless networks, we analyzed and compared their application scenarios, the advantages and disadvantages of different network topologies, and the capabilities of different transmission media. From the perspective of power supply, we analyzed and compared different power supply modules in terms of installation and energy harvesting methods, and the amount of energy they can supply. Finally, we offered three suggestions that may inspire the future development of wireless sensor-based rail defect detection systems.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Coleta de Dados , Fontes de Energia Elétrica
3.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684689

RESUMO

The recognition of abnormal gait behavior is important in the field of motion assessment and disease diagnosis. Currently, abnormal gait behavior is primarily recognized by pressure and inertial data obtained from wearable sensors. However, the data drift and wearing difficulties for patients have impeded the application of these wearable sensors. Here, we propose a contactless abnormal gait behavior recognition method that captures human pose data using a monocular camera. A lightweight OpenPose (OP) model is generated with Depthwise Separable Convolution to recognize joint points and extract their coordinates during walking in real time. For the walking data errors extracted in the 2D plane, a 3D reconstruction is performed on the walking data, and a total of 11 types of abnormal gait features are extracted by the OP model. Finally, the XGBoost algorithm is used for feature screening. The final experimental results show that the Random Forest (RF) algorithm in combination with 3D features delivers the highest precision (92.13%) for abnormal gait behavior recognition. The proposed scheme overcomes the data drift of inertial sensors and sensor wearing challenges in the elderly while reducing the hardware requirements for model deployment. With excellent real-time and contactless capabilities, the scheme is expected to enjoy a wide range of applications in the field of abnormal gait measurement.


Assuntos
Marcha , Caminhada , Idoso , Algoritmos , Humanos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA