Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Anal Chem ; 96(19): 7506-7515, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690851

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Espectrometria de Massas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico , Humanos , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Reagentes de Ligações Cruzadas/química , Conformação Proteica , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo , Disfunção Cognitiva/metabolismo
2.
Org Lett ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739349

RESUMO

The intramolecular Curtius rearrangement suffers from a high reaction temperature, low yields, tedious product isolation, and difficult scale up. This study presents a room-temperature Curtius rearrangement that can be novelly driven by the HFIP solvent, followed by light-illuminated intramolecular cyclization. Such a mild reaction allows for the preparation of various fused pyridone derivatives with diverse substituent groups that have rarely been incorporated by previous methods. The roles of HFIP and light are investigated by a set of control experiments through a combination of IR and NMR titration. Furthermore, using the substituted fused pyridones as unnatural bases, we can obtain a panel of new nucleotides.

3.
Nat Neurosci ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741020

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

4.
EClinicalMedicine ; 72: 102609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707911

RESUMO

Background: It is known that gestational diabetes mellitus (GDM)-complicated pregnancies could affect maternal cardiometabolic health after delivery, resulting in hepatic dysfunction and a heightened risk of developing non-alcoholic fatty liver disease (NAFLD). Hence, this study aims to summarise existing literature on the impact of GDM on NAFLD in mothers and investigate the intergenerational impact on NAFLD in offspring. Methods: Using 4 databases (PubMed, Embase, Web of Science and Scopus) between January 1980 and December 2023, randomized controlled trials and observational studies that assessed the effect of maternal GDM on intergenerational liver outcomes were extracted and analysed using random-effects meta-analysis to investigate the effect of GDM on NAFLD in mothers and offspring. Pooled odds ratio (OR) was calculated using hazards ratio (HR), relative risk (RR), or OR reported from each study, with corresponding 95% confidence intervals (CI), and statistical heterogeneity was assessed with the Cochran Q-test and I2 statistic, with two-sided p values. The study protocol was pre-registered on PROSPERO (CRD42023392428). Findings: Twenty studies pertaining to mothers and offspring met the inclusion criteria and 12 papers were included further for meta-analysis on intergenerational NAFLD development. Compared with mothers without a history of GDM, mothers with a history of GDM had a 50% increased risk of developing NAFLD (OR 1.50; 95% CI: 1.21-1.87, over a follow-up period of 16 months-25 years. Similarly, compared with offspring born to non-GDM-complicated pregnancies, offspring born to GDM-complicated pregnancies displayed an approximately two-fold elevated risk of NAFLD development (2.14; 1.57-2.92), over a follow-up period of 1-17.8 years. Interpretation: This systematic review and meta-analysis suggests that both mothers and offspring from GDM-complicated pregnancies exhibit a greater risk to develop NAFLD. These findings underline the importance of early monitoring of liver function and prompt intervention of NAFLD in both generations from GDM-complicated pregnancies. Funding: No funding was available for this research.

5.
Sci Total Environ ; 931: 172944, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701919

RESUMO

Air pollution poses a significant threat to public health, while biogenic volatile organic compounds (BVOCs) play a crucial role in both aspects. However, the unclear relationship between BVOCs and air pollutants in the under-canopy space limits the accuracy of air pollution control and the exploitation of forest healthcare functions. To clarify the variation of BVOCs in forest therapy bases, and their impacts on ozone (O3) and fine particulate matter (PM2.5) at nose height, total VOCs (TVOCs) in the forest were collected during typical sunny days, while air pollutants and meteorological factors were observed simultaneously. The results showed that the branch-level emissions of P. tabuliformis were dominated by healthcare-effective monoterpenoids, with only α-pinene having relative air concentrations of over 5 % in forest air samples. The correlation between concentrations of under-canopy TVOCs and emission rates of BVOCs from P. tabuliformis was weak (p > 0.09) in all seasons. However, the correlation between concentrations of TVOCs and the concentrations of O3 and PM2.5 showed clear seasonal differences. In spring, TVOCs only showed a significant negative correlation with PM2.5 in the forest (p < 0.01). In summer and autumn, TVOCs were significantly negatively correlated with both O3 (p < 0.001) and PM2.5 (p < 0.01). Specifically, the negative linear relationships were more pronounced for O3 and oxygenated VOCs in autumn (R2 = 0.40, p < 0.001) than for other relationships. The relationship between air pollutant concentrations inside and outside the forest also showed significant seasonal differences, generally characterized by a weaker correlation between them during seasons of strong emissions. Therefore, BVOCs in coniferous forests are health functions as they can provide healthcare effects and mitigate the concentration of air pollutants in the forest, and the establishment of forest therapy bases in rural areas with low NOx can be a sensible approach to promote good health, well-being, and sustainable development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Florestas , Ozônio , Material Particulado , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Ozônio/análise , Estações do Ano
6.
Mol Neurobiol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769227

RESUMO

Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.

7.
J Dent ; 146: 105028, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719135

RESUMO

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38618714

RESUMO

OBJECTIVE: The meta-analysis was performed to evaluate the effectiveness of telemedicine interventions on patients with diabetic foot ulcers(DFU). APPROACH: The authors conducted a comprehensive search across eight databases. The aim was to identify randomized controlled trials examining the effectiveness of telemedicine for patients with DFU. Methodological qualities of included studies were assessed using Cochrane Handbook for Systematic Reviews of Intervention.. Subsequently, a meta-analysis was conducted using RevMan 5.3 to synthesize the findings. RESULTS: Ten studies involving 1678 patients with DFU were included in the meta-analysis. In comparison to the face-to-face intervention group, telemedicine interventions significantly reduced the amputation rate (risk ratio (RR) = 0.64, 95% confidence interval (CI) = 0.44-0.92, p = 0.02), decreased costs (mean difference (MD) = -4158.51, 95% CI = -7304.69--1012.34, p = 0.01), better controlled fasting blood glucose( FPG)(MD = -0.89, 95% CI = -1.43--0.36, p = 0.001), achieved superior glycated hemoglobin(HbA1c) control (MD = -0.71, 95% CI = -1.01--0.41, p ˂ 0.00001). No significant differences were observed between the telemedicine group and the face-to-face group in terms of healing rate, mortality, and healing time.  Innovations: Our study suggests that telemedicine is a viable strategy for managing DFU. CONCLUSIONS: The meta-analysis indicates that telemedicine interventions have a positive effect on DFU. Nevertheless, more well-designed and high-quality studies are needed to reach a conclusion with greater confidence.

9.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585720

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

10.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38644788

RESUMO

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Assuntos
Sequência de Aminoácidos , Nephropidae , Neuropeptídeos , Proteômica , Animais , Nephropidae/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/análise , Proteômica/métodos , Espectrometria de Massas , Dados de Sequência Molecular
11.
J Proteome Res ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426863

RESUMO

Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five Callinectes sapidus neuronal tissue types.

12.
Methods Mol Biol ; 2758: 445-455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549029

RESUMO

Human cerebrospinal fluid (CSF) is a rich source for central nervous system (CNS)-related disease biomarker discovery due to its direct interchange with the extracellular fluid of the CNS. Though extensive proteome-level profiling has been conducted for CSF, studies targeting at its endogenous peptidome is still limited. It is more difficult to include the post-translational modifications (PTMs) characterization of the peptidome in the mass spectrometry (MS) analysis because of their low abundance and the challenge of data interpretation. In this chapter, we present a peptidomic workflow that combines molecular weight cut-off (MWCO) separation, electron-transfer and higher-energy collision dissociation (EThcD) fragmentation, and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides including both N-glycosylation and O-glycosylation and other common peptide PTMs. The method has been successfully adopted to analyze CSF samples from healthy donors, mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients to provide a landscape of peptidome in different disease states.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos/química , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Glicosilação , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano
13.
Chem Soc Rev ; 53(8): 3656-3686, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38502089

RESUMO

Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.


Assuntos
Ouro , Ouro/química , Humanos , Propriedades de Superfície , Nanopartículas Metálicas/química , Odontologia , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos
14.
Methods Mol Biol ; 2758: 255-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549019

RESUMO

Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. Crustaceans contain well-defined neural networks, including the stomatogastric ganglion, oesophageal ganglion, commissural ganglia, and several neuropeptide-rich organs such as the brain, pericardial organs, and sinus glands. As existing mass spectrometry (MS) methods are not readily amenable to neuropeptide studies, there is a great need for optimized sample preparation, data acquisition, and data analysis methods. Herein, we present a general workflow and detailed methods for MS-based neuropeptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multi-faceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.


Assuntos
Neuropeptídeos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neuropeptídeos/metabolismo , Peptídeos , Diagnóstico por Imagem , Gânglios/química , Mamíferos/metabolismo
15.
Nature ; 626(8001): 1141-1148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326620

RESUMO

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Regulação Alostérica/efeitos dos fármacos , Cinacalcete/farmacologia , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Lipídeos , Nanoestruturas/química , Poliaminas/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato , Triptofano/metabolismo , Cálcio/metabolismo
16.
Anal Chem ; 96(9): 3870-3878, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373348

RESUMO

Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Proteômica , Encéfalo , Proteoma
17.
Am J Clin Nutr ; 119(4): 1065-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408725

RESUMO

BACKGROUND: Evidence has indicated that polyunsaturated fatty acids (PUFAs)-enriched diet could reduce inflammation because of thyroid autoimmunity in vivo, and therefore, enhance thyroid function. OBJECTIVES: We investigated whether early pregnancy plasma phospholipid PUFAs could benefit maternal thyroid function across pregnancy, which is critical to fetal brain development and growth in pregnancy. METHODS: Within the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton Cohort, we collected plasma samples longitudinally from 214 subjects [107 with gestational diabetes mellitus (GDM) matched with 107 controls] with a singleton pregnancy. We measured 11 PUFAs at early pregnancy (10-14 wk) and 5 thyroid biomarkers at 10-14, 15-26, 23-31, and 33-39 wk, including free thyroxine (fT4), free triiodothyronine (fT3), thyroid-stimulating hormone, antithyroid peroxidase, and antithyroglobulin. Associations of PUFAs with thyroid function biomarkers and relative risk (RR) of gestational hypothyroidism (GHT) during pregnancy were assessed using generalized linear mixed models and modified Poisson regression, respectively. RESULTS: After sample weighting because of subjects with GDM over-representing in the analytic sample with biomarkers, eicosapentaenoic acid (EPA) at early pregnancy was associated with a reduction of 0.24 pmol/L (95% confidence intervals: -0.31, -0.16) in fT3 across gestation per standard deviation (SD) increment, whereas docosahexaenoic acid (DHA) at early pregnancy was associated with an increment of 0.04 ng/dL (0.02, 0.05) in fT4 across gestation per SD increment. Furthermore, EPA and docosatetraenoic acid (DTA) were associated with lower risks of persistent GHT (EPA-RR: 0.13; 0.06, 0.28; DTA-RR: 0.24; 0.13, 0.44) per SD increment. All significant associations remained robust in sensitivity analysis and multiple testing. CONCLUSIONS: Certain plasma phospholipid PUFAs were associated with optimal levels of thyroid biomarkers and even lower risk of GHT throughout pregnancy, which might be potentially targeted for maternal thyroid regulation in early pregnancy. CLINICAL TRIAL REGISTRY: This trial was registered at https://beta. CLINICALTRIALS: gov/study/NCT00912132?distance=50&term=NCT00912132&rank=1 as NCT00912132.


Assuntos
Diabetes Gestacional , Fosfolipídeos , Gravidez , Feminino , Criança , Humanos , Estudos Longitudinais , Glândula Tireoide , Ácidos Graxos Insaturados , Ácido Eicosapentaenoico , Biomarcadores , Ácidos Graxos
18.
BJOG ; 131(7): 1020-1021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342607
19.
Nat Chem ; 16(5): 762-770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365942

RESUMO

Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.


Assuntos
Glicolipídeos , Lipidômica , Fosfolipídeos , Espectrometria de Massas em Tandem , Animais , Glicolipídeos/química , Fosfolipídeos/química , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Camundongos , Sulfatos/química , Fígado/metabolismo , Fígado/química
20.
FEBS J ; 291(9): 1909-1924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380720

RESUMO

Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Complexo Mediador , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Complexo Mediador/genética , Complexo Mediador/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fluoruracila/farmacologia , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Acetilação/efeitos dos fármacos , Histonas/metabolismo , Histonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA