Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(3): 969-979, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36309964

RESUMO

BACKGROUND: The development of stimulus-responsive and photothermally controlled-release microcapsule pesticide delivery systems is a promising solution to enhance the effective utilization and minimize the excessive use of pesticides in agriculture. RESULTS: In this study, an AVM@CS@TA-Fe microcapsule pesticide delivery system was developed using avermectin as the model drug, chitosan and tannic acid as the wall materials, and tannic acid-Fe complex layer as the photothermal agent. The optical microscope, scanning electron microscope, transmission electron microscope, and Fourier-transform infrared spectroscope were used to characterize the prepared microcapsule. The slow-release, UV-shielding, photothermal performance, and nematicidal activity of the microcapsule were systematically investigated. The results showed that the system exhibited excellent pH-responsive and photothermal-sensitive performances. In addition, the UV-shielding performance of the delivery system was improved. The photothermal conversion efficiency (η) of the system under the irradiation of near-infrared (NIR) light was determined to be 14.18%. Moreover, the nematicidal activities of the system against pine wood nematode and Aphelenchoides besseyi were greatly increased under the irradiation of light-emitting diode (LED) simulated sunlight. CONCLUSION: The release of the pesticide-active substances in such a pesticide delivery system could be effectively regulated with the irradiation of NIR light or LED-simulated sunlight. Thus, the developed pesticide delivery system may have broad application prospects in modern agriculture fields. © 2022 Society of Chemical Industry.


Assuntos
Praguicidas , Preparações de Ação Retardada , Cápsulas/efeitos da radiação , Luz Solar , Concentração de Íons de Hidrogênio
2.
RSC Adv ; 12(36): 23387-23395, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090399

RESUMO

This study aimed to achieve the controlled-release of bioactive ingredients in microcapsule pesticide delivery systems. A photothermal controlled-release microcapsule pesticide delivery system was constructed using chitosan and polydopamine (PDA) as the wall materials to encapsulate avermectin. All the prepared microcapsules were characterized by the methods of optical microscopy, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The slow-release, UV-shielding, photothermal performance, and the nematicidal activity of the prepared microcapsules were also systematically investigated. The results indicated that the prepared microcapsules had excellent slow-release and UV-shielding performance when further encapsulated with the PDA layer relative to those of the non-PDA-encapsulated products. The photothermal sensitivity of the AVM@CS/CMA/PDA composite microcapsule under the irradiation of near-infrared light (NIR) was dramatically enhanced with the photothermal conversion efficiency (η) of 14.93%. Furthermore, the nematicidal activity of the AVM@CS/CMA/PDA composite microcapsule system was effectively improved on exposure to the irradiation of a light-emitting diode (LED) full-spectrum light. The strategies used in this study for developing the photothermal controlled-release pesticide delivery system might play an important role on improving utilization of pesticides.

3.
RSC Adv ; 12(26): 16918-16926, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754886

RESUMO

To improve the utilization rate of chlorfenapyr and make the wall material of chlorfenapyr microcapsules easily degradable, polylactide diol, toluene diisocyanate and 1,4-butanediol were used to prepare a chlorfenapyr microcapsule suspension by interfacial polymerization. The product was characterized by the methods of optical microscopy, scanning electron microscopy and Fourier-transform infrared spectroscopy. The results indicated that the microcapsule particles were spherical, with an encapsulation efficiency of 84.20%. The diluted product had good wetting and spreading abilities on cabbage leaves. Compared with other commercial formulations, the slow-release effect of the microcapsule suspension was more obvious and the release mechanisms conform to Fickian diffusion, with the release rate controllable by adjusting the external pH conditions. Furthermore, the wall material of the microcapsules showed good degradation performance in a phosphate-buffered solution. Microencapsulation by this method significantly increased the validity period of chlorfenapyr and the wall material was also degraded easily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA