Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Adv Res ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384125

RESUMO

INTRODUCTION: ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE: This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS: To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS: Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION: In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.

2.
J Food Sci ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394044

RESUMO

Pectin, an acidic polysaccharide, is naturally present primarily in the cell walls and inner layers of higher plants. Pectin is extensively used in food, pharmaceutical, cosmetic, and other industries owing to its exceptional attributes encompassing superior gelation, emulsification, antioxidant activity, stability, biocompatibility, and nontoxicity. Due to the increasing demand for pectin, there is a short supply in the domestic pectin market. Currently, the domestic production of pectin is heavily reliant on imports, thus emphasizing the urgent need to enhance its local manufacturing capabilities. Due to the diverse sources of pectin and variations in extraction and purification methods, its content, physicochemical properties, and biological activity are influenced, consequently impacting the market application of pectin. Therefore, this paper comprehensively reviews the extraction and purification process of pectin, in vivo metabolism, and biological activities (including antitumor, immunomodulatory, anti-inflammatory, antioxidant, hypoglycemic and hypolipidemic effects, antimicrobial properties, accelerated wound healing potential, promotion of gastrointestinal peristalsis, and alleviation of constipation as well as cholesterol-lowering effect). Furthermore, it explores the diverse applications of pectin in food science, biomedicine, and other interdisciplinary fields. This review serves as a valuable resource for enhancing the efficiency of pectin content improvement and exploring the potential value and application of pectin in a more scholarly and scientifically rigorous manner.

3.
Front Neurosci ; 18: 1433583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099632

RESUMO

Background: Parkinson's disease (PD) is a prevalent neurodegenerative disorder affecting millions globally. It encompasses both motor and non-motor symptoms, with a notable impact on patients' quality of life. Electroencephalogram (EEG) is a non-invasive tool that is increasingly utilized to investigate neural mechanisms in PD, identify early diagnostic markers, and assess therapeutic responses. Methods: The data were sourced from the Science Citation Index Expanded within the Web of Science Core Collection database, focusing on publications related to EEG research in PD from 2004 to 2023. A comprehensive bibliometric analysis was conducted using CiteSpace and VOSviewer software. The analysis began with an evaluation of the selected publications, identifying leading countries, institutions, authors, and journals, as well as co-cited references, to summarize the current state of EEG research in PD. Keywords are employed to identify research topics that are currently of interest in this field through the analysis of high-frequency keyword co-occurrence and cluster analysis. Finally, burst keywords were identified to uncover emerging trends and research frontiers in the field, highlighting shifts in interest and identifying future research directions. Results: A total of 1,559 publications on EEG research in PD were identified. The United States, Germany, and England have made notable contributions to the field. The University of London is the leading institution in terms of publication output, with the University of California closely following. The most prolific authors are Brown P, Fuhr P, and Stam C In terms of total citations and per-article citations, Stam C has the highest number of citations, while Brown P has the highest H-index. In terms of the total number of publications, Clinical Neurophysiology is the leading journal, while Brain is the most highly cited. The most frequently cited articles pertain to software toolboxes for EEG analysis, neural oscillations, and PD pathophysiology. Through analyzing the keywords, four research hotspots were identified: research on the neural oscillations and connectivity, research on the innovations in EEG Analysis, impact of therapies on EEG, and research on cognitive and emotional assessments. Conclusion: This bibliometric analysis demonstrates a growing global interest in EEG research in PD. The investigation of neural oscillations and connectivity remains a primary focus of research. The application of machine learning, deep learning, and task analysis techniques offers promising avenues for future research in EEG and PD, suggesting the potential for advancements in this field. This study offers valuable insights into the major research trends, influential contributors, and evolving themes in this field, providing a roadmap for future exploration.

4.
Sci Rep ; 14(1): 15984, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987401

RESUMO

Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km2, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.

5.
Genes (Basel) ; 15(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39062649

RESUMO

Ureide permeases (UPSs) mediate the transport of ureides, including allantoin and allantoate, which act as nitrogen-transporting compounds in plants and have recently been found to play a role in cellular signaling. To date, UPSs have not been reported in potato, and their identification is important for further function studies and for understanding molecular mechanisms of plant adverse responses. Based on potato genomic data, we identified 10 StUPS genes in potato (Solanum tuberosum L.). Then, we conducted a comprehensive study of the identified StUPS genes using bioinformatics methods. Genome phylogenetic and genomic localization analyses revealed that StUPSs can be classified into four categories, are highly homologous to Arabidopsis thaliana UPS members, and are distributed on three chromosomes. The six StUPS genes were investigated by RT-qPCR, and the findings indicated that all of these genes are involved in the response to several stresses, including low nitrogen, cold, ABA, salt, H2O2, and drought. This study establishes a strong theoretical framework for investigating the function of potato UPS genes, as well as the molecular mechanisms underlying the responses of these genes to various environmental stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
8.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825861

RESUMO

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


Assuntos
Proteínas 14-3-3 , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Potássio , Nicotiana/genética , Nicotiana/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Potássio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
9.
PeerJ ; 12: e17342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737745

RESUMO

Background: N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective: The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods: The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results: Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions: This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.


Assuntos
Alprazolam , Sinergismo Farmacológico , Sono , Animais , Alprazolam/farmacologia , Alprazolam/administração & dosagem , Camundongos , Masculino , Sono/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Reflexo de Endireitamento/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem
10.
Front Plant Sci ; 15: 1356922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628367

RESUMO

Among the bioactive compounds, lipid-soluble tanshinone is present in Salvia miltiorrhiza, a medicinal plant species. While it is known that ethephon has the ability to inhibit the tanshinones biosynthesis in the S. miltiorrhiza hairy root, however the underlying regulatory mechanism remains obscure. In this study, using the transcriptome dataset of the S. miltiorrhiza hairy root induced by ethephon, an ethylene-responsive transcriptional factor EIN3-like 1 (SmEIL1) was identified. The SmEIL1 protein was found to be localized in the nuclei, and confirmed by the transient transformation observed in tobacco leaves. The overexpression of SmEIL1 was able to inhibit the tanshinones accumulation to a large degree, as well as down-regulate tanshinones biosynthetic genes including SmGGPPS1, SmHMGR1, SmHMGS1, SmCPS1, SmKSL1 and SmCYP76AH1. These are well recognized participants in the tanshinones biosynthesis pathway. Further investigation on the SmEIL1 was observed to inhibit the transcription of the CPS1 gene by the Dual-Luciferase (Dual-LUC) and yeast one-hybrid (Y1H) assays. The data in this work will be of value regarding the involvement of EILs in regulating the biosynthesis of tanshinones and lay the foundation for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.

11.
Anal Methods ; 16(9): 1347-1356, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334707

RESUMO

Saffron (Crocus sativus L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml-1 was achieved in the determination of ABA and IAA, and the correlation coefficient (R2) was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% (n = 9). The matrix effect was 80.38-90.50% (n = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.


Assuntos
Crocus , Plantas Medicinais , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Crocus/química , Crocus/genética , Reprodutibilidade dos Testes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Plantas Medicinais/metabolismo , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Amido , Hormônios
12.
J Ethnopharmacol ; 325: 117776, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38307354

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY: This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS: The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS: All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION: Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.


Assuntos
Colite Ulcerativa , Colite , Lonicera , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Interleucina-6/genética , Interleucina-6/metabolismo , Anti-Inflamatórios/efeitos adversos , RNA Mensageiro/metabolismo , Ácidos Graxos Voláteis/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite/tratamento farmacológico
13.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396922

RESUMO

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Assuntos
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos , Desenvolvimento Vegetal , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
14.
J Hematol Oncol ; 17(1): 9, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402237

RESUMO

BACKGROUND: Emerging evidences suggest that aberrant metabolites contributes to the immunosuppressive microenvironment that leads to cancer immune evasion. Among tumor immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are pathologically activated and extremely immunosuppressive, which are closely associated with poor clinical outcomes of cancer patients. However, the correlation between MDSCs mediated immunosuppression and particular cancer metabolism remained elusive. METHODS: Spontaneous lung adenocarcinoma and subcutaneous mouse tumor models, gas chromatography-mass spectrometry (GC-MS) and immunofluorescence assay of patient-derived lung adenocarcinoma tissues, and flow cytometry, RNA sequencing and Western blotting of immune cells, were utilized. RESULTS: Metabolite profiling revealed a significant accumulation of acetic acids in tumor tissues from both patients and mouse model, which contribute to immune suppression and cancer progression significantly through free fatty acid receptor 2 (FFAR2). Furthermore, FFAR2 is highly expressed in the myeloid-derived suppressor cells (MDSCs) from the tumor of lung adenocarcinoma (LUAD) patients which is greatly associated with poor prognosis. Surprisingly, whole or myeloid Ffar2 gene deletion markedly inhibited urethane-induced lung carcinogenesis and syngeneic tumor growth with reduced MDSCs and increased CD8+ T cell infiltration. Mechanistically, FFAR2 deficiency in MDSCs significantly reduced the expression of Arg1 through Gαq/Calcium/PPAR-γ axis, which eliminated T cell dysfunction through relieving L-Arginine consumption in tumor microenvironment. Therefore, replenishment of L-Arginine or inhibition to PPAR-γ restored acetic acids/FFAR2 mediated suppression to T cells significantly. Finally, FFAR2 inhibition overcame resistance to immune checkpoint blockade through enhancing the recruitment and cytotoxicity of tumor-infiltrating T cells. CONCLUSION: Altogether, our results demonstrate that the acetic acids/FFAR2 axis enhances MDSCs mediated immunosuppression through Gαq/calcium/PPAR-γ/Arg1 signaling pathway, thus contributing to cancer progression. Therefore, FFAR2 may serve as a potential new target to eliminate pathologically activated MDSCs and reverse immunosuppressive tumor microenvironment, which has great potential in improving clinical outcomes of cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Células Supressoras Mieloides , Neoplasias , Humanos , Camundongos , Animais , Cálcio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Arginina/metabolismo , Acetatos/metabolismo , Microambiente Tumoral
15.
J Cell Biochem ; 125(2): e30519, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224137

RESUMO

Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Transplante de Células-Tronco Mesenquimais , Humanos , Lipopolissacarídeos/efeitos adversos , Exossomos/metabolismo , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Cordão Umbilical/metabolismo
16.
Ecotoxicol Environ Saf ; 269: 115744, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086263

RESUMO

A widely applied pesticide of azoxystrobin, is increasingly detected in the water environment. Concern has been raised against its potential detriment to aquatic ecosystems. It has been shown that exposure to azoxystrobin interfere with the locomotor behavior of zebrafish larvae. This study aims to investigate whether exposure to environmental levels of azoxystrobin (2 µg/L, 20 µg/L, and 200 µg/L) changes the behavior of male adult zebrafish. Herein, we evaluated behavioral response (locomotor, anxiety-like, and exploratory behaviors), histopathology, biochemical indicators, and gene expression in male adult zebrafish upon azoxystrobin exposure. The study showed that exposure to azoxystrobin for 42 days remarkably increased the locomotor ability of male zebrafish, resulted in anxiety-like behavior, and inhibited exploratory behavior. After treatment with 200 µg/L azoxystrobin, vasodilatation, and congestion were observed in male zebrafish brains. Exposure to 200 µg/L azoxystrobin notably elevated ROS level, MDA concentration, CAT activity, and AChE activity, while inhibiting SOD activity, GPx activity, ACh concentration, and DA concentration in male zebrafish brains. Moreover, the expression levels of genes related to the antioxidant, cholinergic, and dopaminergic systems were significantly changed. This suggests that azoxystrobin may interfere with the homeostasis of neurotransmitters by causing oxidative stress in male zebrafish brains, thus affecting the behavioral response of male zebrafish.


Assuntos
Pirimidinas , Estrobilurinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Peixe-Zebra/metabolismo , Ecossistema , Estresse Oxidativo , Colinérgicos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
17.
Chemosphere ; 350: 140992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141676

RESUMO

Carbofuran, a widely used carbamate insecticide, is frequently detected in water. In this study, a high-performance adsorbent (WAB4) for carbofuran was obtained from laboratory-synthesized biochars. The maximum adsorption of carbofuran by WAB4 reaches 113.7 mg/g approximately. The adsorption of carbofuran by biochar was a multi-molecular layer and the adsorption process conforms to the pseudo-second-order kinetic model (R2 = 0.9984) and Freundlich isotherm model (R2 = 0.99). Importantly, an in vivo rat model was used to assess the combined toxicological effects of biochar-carbofuran complexes. The toxicity of the complexes (LD50 > 12 mg/kg) is lower than that of carbofuran (LD50 = 7.9 mg/kg) alone. The damage of biochar-carbofuran complex on rat liver and lung is significantly less than that of carbofuran. The Cmax and bioavailability of carbofuran were found to be reduced by 64% and 68%, respectively, when biochar was present, by UPLC-MS/MS analysis of carbofuran in rat plasma. Furthermore, it was confirmed that the biochar-carbofuran complex is relatively stable in the gastrointestinal tract, by performing a carbofuran release assay in artificial gastrointestinal fluids in vitro. Collectively, biochar is a bio-friendly material for the removal of carbofuran from water.


Assuntos
Carbofurano , Poluentes Químicos da Água , Animais , Ratos , Carbofurano/toxicidade , Adsorção , Água , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carvão Vegetal , Cinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
18.
Hortic Res ; 10(12): uhad228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156286

RESUMO

After harvest, potato tubers undergo an important period of dormancy, which significantly impacts potato quality and seed vigor. StSN2 has been reported as a key gene for maintaining tuber dormancy; in this study, we explored the molecular mechanism by which StSN2 maintains dormancy. StBIN2 was first identified as a candidate protein that interacts with StSN2 by co-immunoprecipitation/mass spectrometry, and both qPCR and enzyme activity experiments showed that StSN2 can promote the StBIN2 expression and activity. In addition, the interaction between StSN2 and StBIN2 was verified by yeast two-hybrid, luciferase complementation experiments and co-immunoprecipitation. Bioinformatics analysis and site-directed mutagenesis confirmed the critical role of cysteine residues of StBIN2 in its binding to StSN2. Similar to that of StSN2, overexpression of StBIN2 extended the dormancy of potato tuber. Interaction between StSN2 and StBIN2 increased the activity of the StBIN2 enzyme, inhibited the expression of StBZR1, and suppressed BR signaling. On the contrary, this interaction promoted the expression of StSnRK2.2/2.3/2.4/2.6 and StABI5, key genes of ABA signaling, and the phosphorylation of StSnRK2.3, thereby promoting ABA signaling. Altogether, our results indicate that StSN2 interacts with StBIN2 through key cysteine residues and StBIN2 maintains tuber dormancy by affecting ABA and BR signaling. Findings of this research offer new insights into the molecular mechanism by which StSN2 maintains potato tuber dormancy through interaction with StSIN2 and provide guidance for potato improvement.

19.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999412

RESUMO

Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates remarkable selectivity and affinity for sodium channels on the excitation membrane of nerves. This property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality. Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids-an innovative model closely mirroring the structural and functional intricacies of the human brain. This model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure, thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis, we ascertained that these differential genes predominantly participate in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA network analysis unveiled that DEmRNAs exert control over the expression of ion channels and neurocytokines, suggesting their potential role in mediating apoptosis.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Humanos , Tetrodotoxina/farmacologia , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Canais de Sódio/genética , Canais de Sódio/metabolismo , Síndromes Neurotóxicas/genética , Redes Reguladoras de Genes
20.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003283

RESUMO

Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Carboidratos , Amido/metabolismo , Sacarose/metabolismo , Tubérculos/metabolismo , Hormônios/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA