Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Clin Med ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137759

RESUMO

The adoption of neoadjuvant concurrent chemoradiotherapy (CCRT) has reshaped the therapeutic landscape, but response prediction remains challenging. This study investigates the interaction between pre-CCRT carcinoembryonic antigen (CEA) and post-CCRT hemoglobin (Hb) levels in predicting the response of locally advanced rectal cancer (LARC) to CCRT. Retrospective data from 93 rectal cancer patients receiving neoadjuvant CCRT were analyzed. Univariate analyses assessed clinical factors associated with tumor regression grade (TRG) and T-stage outcomes. Machine learning identified predictive biomarkers. Interaction effects between CEA and Hb were explored through subgroup analyses. Post-CCRT Hb varied between pre-CCRT CEA groups. The interaction between pre-CCRT CEA and post-CCRT Hb influenced TRG. Males with normal pre-CCRT CEA and anemia showed better treatment responses. Females with elevated pre-CCRT CEA and post-CCRT anemia exhibited poorer responses. The interaction effect between them was significant, indicating that their relationship with TRG was not additive. Inflammatory biomarkers, WBC, neutrophil count, and post-CCRT platelet level correlated with CCRT response. Contrasting with previous findings, anemia was a predictor of better treatment response in males with normal pre-CCRT CEA. The interaction between pre-CCRT CEA and post-CCRT Hb levels predicts the response of LARC to CCRT. CEA, Hb, and sex should be considered when assessing treatment response. Inflammatory biomarkers contribute to response prediction. Understanding these complex relationships can enhance personalized treatment approaches in rectal cancer patients.

2.
Nanomaterials (Basel) ; 13(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446540

RESUMO

X-ray detection has widespread applications in medical diagnosis, non-destructive industrial radiography and safety inspection, and especially, medical diagnosis realized by medical X-ray detectors is presenting an increasing demand. Perovskite materials are excellent candidates for high-energy radiation detection based on their promising material properties such as excellent carrier transport capability and high effective atomic number. In this review paper, we introduce X-ray detectors using all kinds of halide perovskite materials along with various crystal structures and discuss their device performance in detail. Single-crystal perovskite was first fabricated as an active material for X-ray detectors, having excellent performance under X-ray illumination due to its superior photoelectric properties of X-ray attenuation with µm thickness. The X-ray detector based on inorganic perovskite shows good environmental stability and high X-ray sensitivity. Owing to anisotropic carrier transport capability, two-dimensional layered perovskites with a preferred orientation parallel to the substrate can effectively suppress the dark current of the device despite poor light response to X-rays, resulting in lower sensitivity for the device. Double perovskite applied for X-ray detectors shows better attenuation of X-rays due to the introduction of high-atomic-numbered elements. Additionally, its stable crystal structure can effectively lower the dark current of X-ray detectors. Environmentally friendly lead-free perovskite exhibits potential application in X-ray detectors by virtue of its high attenuation of X-rays. In the last section, we specifically introduce the up-scaling process technology for fabricating large-area and thick perovskite films for X-ray detectors, which is critical for the commercialization and mass production of perovskite-based X-ray detectors.

3.
J Phys Chem Lett ; 13(30): 6944-6955, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876494

RESUMO

In this work, we present the ion migration of CsPbIBr2 under illumination and impede it by incorporating the large cations of guanidinium (GA). A series of "probe-set-probe" operations are applied to assess the photoluminescence (PL) behavior spectrally and spatially, which is correlated to the ion migration-induced phase separation, of CsPbIBr2 and GAxCs1-xPbIBr2 perovskites. The local lattice distortion introduced by GA could reduce the strain gradient in GAxCs1-xPbIBr2 to inhibit the ion migration, leading to a stable PL spectrum and enhanced device stability under light stimulation. A solar cell with an optimized stoichiometric composition of GA0.1Cs0.9PbIBr2 delivers comparable photovoltaic performance and improved stability compared to those of CsPbIBr2-based perovskite solar cells, retaining 80% of its initial power conversion efficiency after being continuously bathed in light for 8 h under ambient conditions without encapsulation, while the CsPbIBr2 counterpart shows an efficiency that is <30% of its initial value under the same test condition.

4.
J Clin Med ; 11(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566538

RESUMO

Background: Radiotherapy (RT) provides a modern treatment to enhance the malignant glioma control rate. The purpose of our study was to determine the effect of tumor coverage on disease prognosis and to predict optimal RT plans to achieve a lower normal tissue complication probability (NTCP). Methods: Ten malignant-glioma patients with tumors adjacent to organs at risk (OARs) were collected. The patients were divided into two groups according to adequate coverage or not, and prognosis was analyzed. Then, using intensity-modulated radiation therapy (IMRT), volume-modulated arc therapy (VMAT), and helical tomotherapy (TOMO) to simulate new treatment plans for 10 patients, the advantages of these planning systems were revealed for subsequent prediction of NTCP. Results: The results of clinical analysis indicated that overall survival (p = 0.078) between the adequate and inadequate groups showed no differences, while the adequate group had better recurrence-free survival (p = 0.018) and progression-free survival (p = 0.009). TOMO had better CI (p < 0.001) and also predicted a lower total-irradiated dose to the normal brain (p = 0.001) and a lower NTCP (p = 0.027). Conclusions: The TOMO system provided optimal therapeutic planning, reducing NTCP and achieving better coverage. Combined with the clinical results, our findings suggest that TOMO can make malignant glioma patients close to OARs achieve better disease control.

5.
Front Psychol ; 13: 821345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422734

RESUMO

Problematic smartphone use (PSU) is an expanded public health heed that requires more study to clarify the influence elements of different populations. The aim of this study was to investigate the relationship between smartphone use, and sleep quality, self-perceived health, and exercise participation in university students. A total of 1,575 Taiwanese undergraduate students from 7 universities participated in the study. Three questionnaires were completed by the study individuals. The results show the overall PSU rate was 11.8%. Average smartphone users were more likely to feel in good health, better sleep quality and less unsatisfactory exercise participation than those who were problematic smartphone users. Multiple logistic regression analysis indicated that PSU, low weekly exercise frequency, and poor sleep quality were significant indicators of poor self-perceived health. We concluded that both low physical activity and PSU did have negative impacts on self-perceived health and sleep quality for undergraduate students.

6.
J Appl Clin Med Phys ; 23(5): e13575, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35239259

RESUMO

PURPOSE: Whole-brain radiotherapy (WBRT) is commonly used in patients with multiple brain metastases. Compared with conventional WBRT, hippocampal avoidance WBRT (HA-WBRT) more favorably preserves cognitive function and the quality of life. The hippocampal volume is considerably small (approximately 3.3 cm3 ). Therefore, downsizing the leaf width of a multileaf collimator (MLC) may provide higher spatial resolution and better plan quality. Volumetric modulated arc therapy (VMAT) could simulate the half MLC leaf width through couch shifting between arcs. This study investigated changes in VMAT quality for HA-WBRT with a simulated fine MLC leaf width. METHODS: We included 18 patients with brain metastasis. All target and avoidance structures were contoured by an experienced radiation oncologist. The prescribed dose was 30 Gy in 10 fractions. For each patient, three different treatment plans were generated for comparison: VMAT with couch-shift, VMAT without couch-shift, and TomoTherapy. All treatment plans fulfilled Radiation Therapy Oncology Group (RTOG) 0933 criteria for HA-WBRT. The Wilcoxon paired signed-rank test was used to compare different treatment plans. RESULTS: VMAT with couch-shift had the better average conformity index (0.823) with statistically significant difference compared to VMAT without couch-shift (0.810). VMAT with couch-shift (0.219) had a more favorable average homogeneity index (HI) than did VMAT without couch-shift (0.230), although the difference was not significant. TomoTherapy had an optimal average HI of 0.070. In terms of the hippocampus, all three treatment plans met the RTOG 0933 criteria. VMAT with couch-shift had a lower average Dmax (15.2 Gy) than did VMAT without couch-shift (15.3 Gy, p = 0.071) and TomoTherapy (15.5 Gy, p = 0.133). The average D100% of hippocampus was the same for both VMAT with and without couch-shift (8.5 Gy); however, TomoTherapy had a lower average D100% value of 7.9 Gy. The treatment delivery time was similar between VMAT with and without couch-shift (average, 375.0 and 369.6 s, respectively). TomoTherapy required a long average delivery time of 1489.9 s. CONCLUSION: The plan quality of VMAT for HA-WBRT was improved by using the couch-shift technique to simulate the half MLC leaf width. However, the improvement was not statistically significant except conformity index. The downsizing effect decreased with the use of the sophisticated grade of VMAT. TomoTherapy offered superior plan quality but required the longest delivery time.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Hipocampo/efeitos da radiação , Humanos , Qualidade de Vida , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
7.
Membranes (Basel) ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35207109

RESUMO

In this study, bismuth trioxide (Bi2O3) membranes in an electrolyte-insulator-semiconductor (EIS) structure were fabricated with pH sensing capability. To optimize the sensing performance, the membranes were treated with two types of plasma-NH3 and N2O. To investigate the material property improvements, multiple material characterizations were conducted. Material analysis results indicate that plasma treatments with appropriate time could enhance the crystallization, remove the silicate and facilitate crystallizations. Owing to the material optimizations, the pH sensing capability could be greatly boosted. NH3 or N2O plasma treated-Bi2O3 membranes could reach the pH sensitivity around 60 mV/pH and show promise for future biomedical applications.

8.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671908

RESUMO

Acne is a chronic inflammatory skin disease that often occurs with anaerobic Propionibacterium acnes (P. acnes). Anti-acne patches, made of hydrocolloid or hydrogel, have become a popular way of topical treatment. The outer water-impermeable layer of commercial patches might create hypoxic conditions and promote P. acnes growth. In this study, gelatin/chitosan (GC) bilayer patches were prepared at different temperatures that included room temperature (RT), -20 °C/RT, and -80 °C/RT. The most promising GC bilayer patch (-80 °C /RT) contained a dense upper layer for protection from bacteria and infection and a porous lower layer for absorbing pus and fluids from pimples. The anti-acne bilayer patch was loaded with Cortex Phellodendri amurensis (PA) and Centella asiatica (CA) extracts. PA extract could inhibit the growth of P. acnes and CA extract was reported to improve wound healing and reduce scar formation. Moreover, the water retention rate, weight loss rate, antibacterial activity, and in vitro cytotoxicity of the patches were investigated. The porous structure of the patches promoted water retention and contributed to absorbing the exudate when used on open acne wounds. The GC bilayer patches loaded with PA/CA extracts were demonstrated to inhibit the growth of P. acnes, and accelerate the skin fibroblast cell viability. Based on their activities and characteristics, the GC bilayer patches with PA/CA extract prepared at -80 °C/RT obtain the potential for the application of acne spot treatment.

9.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348869

RESUMO

Multiple-color reflectors using bichiral liquid crystal polymer films (BLCPFs) are investigated. The BLCPFs consist of alternate layers of two different single-pitch cholesteric liquid crystal (CLC) layers, named CLC#A and CLC#B. The thickness of each CLC layer equals its single pitch length. The optical properties in terms of reflections, reflection-wavelength ranges, and distributions of reflection spectra of the BLCPFs that result from the fixed pitch length of CLC#A along with the decrease of the pitch length of CLC#B are qualitatively simulated and investigated. The results indicate that the above optical properties of the BLCPFs depend on the LC birefringence and pitch lengths of CLC#A and CLC#B layers. The concept of fabrication method of the BLCPFs by using polymerizable CLCs and thin films of poly(vinylalcohol) or photoalignment materials is discussed. They have potential practical applications in functional color filters, asymmetrical transmission systems, etc., owing to the multiple reflection bands of BLCPFs. Moreover, the BLCPFs, which can enhance the color gamut and light-utilization efficiency of light sources/LC displays, are reported herein.

10.
Medicine (Baltimore) ; 99(47): e23328, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217871

RESUMO

To compare the effects of different photon energies on radiation planning by intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy (VMAT) and helical tomotherapy (TOMO) for proximal gastric cancer (PGC). Network analysis with microarray procession and gene ontology were used to identify the effect of radiotherapy (RT) on PGC. Then, we retrospectively analyzed 8 PGC patients after receiving irradiation with a prescribed dose of 50.4 Gy. The Pinnacle treatment planning system (TPS, V9.8) was used to generate IMRT and VMAT plans by using 6 or 10 MV. TOMO plans were calculated on the Tomotherapy Planning Station Hi-Art Version 4.2.3 workstation (Tomotherapy Incorporated, Madison, WI, USA). PGC is associated with high DNA repair ability. TOMO plan results in higher tumor coverage and a better conformity index than IMRT and VMAT. 10-MV VMAT yields better dosimetric quality of the gradient index than 6-MV VMAT (P = .012). TOMO was associated with a lower irradiation dose in the mean dose to the right kidney (P = .049), left kidney and heart than 6-MV IMRT and 6-MV VMAT. 6-MV IMRT plan presented a higher dose of lung Dmean (P = .017) than 10-MV IMRT. Additionally, VMAT, using a planning energy of 6 MV, was associated with a significantly higher left kidney Dmean (P = .018) and V10 (P = .036) than a planning energy of 10 MV. TOMO is a better RT plan not only for tumor coverage but also for sparing organs at risk. IMRT and VMAT plans with 10 MV beams are more suitable than 6 MV beams for PGC treatment.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Neoplasias Gástricas/radioterapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fótons , Radiometria , Dosagem Radioterapêutica , Estudos Retrospectivos
11.
Cancer Med ; 9(1): 350-360, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746135

RESUMO

Glioblastoma multiforme (GBM) requires radiotherapy (RT) as its definitive management. However, GBM still has a high local recurrence rate even after RT. Cancer stem-like cells (CSCs) might enable GBM to evade irradiation damage and cause therapeutic failure. The optimal RT plan should achieve a planning target volume (PTV) coverage of more than 95% but cannot always meet the requirements. Here, we demonstrate that irradiation with different tumor coverage rates to different brain areas has similar effects on GBM. To retrospectively analyze the relationship between PTV coverage and the survival rate in 26 malignant glioblastoma patients, we established primary cell lines from patient-derived malignant glioblastoma cells with the PTV95 (PTV coverage of more than 95%) program (GBM-MG1 cells) and the Non-PTV95 (poor PTV coverage of less than 95%) program (GBM-MG2 cells). The clinical results of PTV95 and Non-PTV95 showed no difference in the overall survival (OS) rate (P = .390) between the two different levels of PTV coverage. GBM-MG1 (PTV95 program) cells exhibited higher radioresistance than GBM-MG2 (Non-PTV95 program) cells. CD44 promotes radioresistance, CSC properties, angiogenesis and cell proliferation in GBM-MG1 (PTV95 program) cells. GBM patients receiving RT with the PTV95 program exhibited higher radioresistance, CSC properties, angiogenesis and cell proliferation than GBM patients receiving RT with the Non-PTV95 program. Moreover, CD44 plays a crucial role in these properties of GBM patients with the PTV95 program.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Receptores de Hialuronatos/metabolismo , Tolerância a Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Autorrenovação Celular/efeitos da radiação , Feminino , Seguimentos , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Intervalo Livre de Progressão , Critérios de Avaliação de Resposta em Tumores Sólidos , Estudos Retrospectivos , Taxa de Sobrevida
12.
Opt Express ; 27(18): 24900-24913, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510371

RESUMO

In this study, a perovskite is integrated with an ultra-thin Cu/Cu2O (CCO) composite film, a transparent material with high mobility, to achieve a double-side and low-voltage operable photodetector. Compared to photodetectors that utilize metal electrode with perovskite, the use of CCO significantly enhances the photocurrent (from nA up to mA). It acts as a large-scale hole transport layer. The photodetector exhibits high responsivities of 6.79 AW-1 [illuminated via the fluorine-doped tin oxide (FTO) side] and 10.23 AW-1 (illuminated via CCO side). The detectivities obtained at both illuminated sides are as high as over 1011 Jones. Additionally, the Cu/Cu2O-covered perovskite effectively prevents the reaction of perovskite in the interface. This work reveals that the perovskite/CCO heterojunction photodetector can be considered a promising candidate for applications in bifacial-illuminated and flexible/wearable optoelectronic technologies.

13.
RSC Adv ; 9(56): 32833-32838, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529752

RESUMO

Perovskite solar cells have attracted much attention as next-generation solar cells because of their high efficiency and low fabrication costs. Moreover, perovskite solar cells are a promising candidate for indoor energy harvesting. We investigated the effect of bandgap tuning on the characteristics of triple cation-based perovskite solar cells under fluorescent lamp illumination. According to the current density-voltage curves, perovskite solar cells with a wider bandgap than the conventional one exhibited improved open-circuit voltage without sacrificing short-circuit current density under fluorescent lamp illumination. Moreover, the wider bandgap perovskite films including a large amount of bromine in the composition did not show phase segregation, which can degrade the photovoltaic performance of perovskite solar cells, after fluorescent lamp illumination. Our results demonstrate the facile strategy to improve the performance of perovskite solar cells under ambient lighting and great potential of perovskite solar cells for indoor applications such as power sources for the internet of things.

14.
Cancer Med ; 7(8): 3622-3629, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29968974

RESUMO

Radiotherapy (RT) is an effective treatment for breast cancer. The side effects of breast irradiation, including skin toxicity in the irradiation field, cause considerable discomfort. This study compared the severity of skin toxicity caused by image-guided RT (IGRT) and intensity-modulated RT (IMRT) combined with an electronic portal imaging device (EPID) in breast cancer. This study retrospectively analyzed 458 patients with breast cancer who had received RT. The patients were divided into two groups: 302 and 156 patients in the IMRT and IGRT groups. In the IGRT group, 8 and 148 patients had received helical tomotherapy irradiation and IMRT with cone-beam computed tomography. Simple and multiple logistic regression analyses were used to estimate the relationship between RT technique and the severity of radiation skin toxicity. In our study, 284, 97, and 6 patients exhibited grades I, II, and III radiation dermatitis (RD). Moreover, 75 patients in the IMRT group (24.80%) and 22 patients in the IGRT group (14.10%) exhibited grade II RD. All patients with grade III RD were in the IMRT group (2.00%). No patient exhibited grade IV RD. The patients in the IGRT group exhibited less severity of RD than in the IMRT group. The severity of acute RD due to IGRT is significantly lower than that due to IMRT with EPID.


Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/epidemiologia , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Dermatopatias/epidemiologia , Dermatopatias/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/radioterapia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Razão de Chances , Lesões por Radiação/diagnóstico , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Sistema de Registros , Dermatopatias/diagnóstico , Taiwan , Adulto Jovem
15.
Adv Mater ; 30(30): e1801401, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29883002

RESUMO

The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA2 MAn-1 Pbn I3n+1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm-2 , and a remarkable fill factor of 80.36%.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Energia Solar
16.
Sci Rep ; 8(1): 7646, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769568

RESUMO

Cu/Cu2O films grown by ion beam sputtering were used as p-type modified layers to improve the efficiency and stability of perovskite solar cells (PSCs) with an n-i-p heterojunction structure. The ratio of Cu to Cu2O in the films can be tuned by the oxygen flow ratio (O2/(O2 + Ar)) during the sputtering of copper. Auger electron spectroscopy was performed to determine the elemental composition and chemical state of Cu in the films. Ultraviolet photoelectron spectroscopy and photoluminescence spectroscopy revealed that the valence band maximum of the p-type Cu/Cu2O matches well with the perovskite. The Cu/Cu2O film not only acts as a p-type modified layer but also plays the role of an electron blocking buffer layer. By introducing the p-type Cu/Cu2O films between the low-mobility hole transport material, spiro-OMeTAD, and the Ag electrode in the PSCs, the device durability and power conversion efficiency (PCE) were effectively improved as compared to the reference devices without the Cu/Cu2O interlayer. The enhanced PCE is mainly attributed to the high hole mobility of the p-type Cu/Cu2O film. Additionally, the Cu/Cu2O film serves as a protective layer against the penetration of humidity and Ag into the perovskite active layer.

17.
Appl Opt ; 57(12): 3180-3185, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29714303

RESUMO

This study demonstrates the optical manipulation of colloids dispersed in azo-dye-doped liquid crystals (DDLCs) where the accumulation occurs at the interfaces of the phase domains. We explain the mechanism related to the formation of the domains and the movement of the colloids in DDLCs with respect to the isomerization of azo-dye molecules via the illumination of laser beams. The colloids are dragged to the interfaces of the isotropic/nematic domain and the air bubble/isotropic domain by molecular interaction and Marangoni flows.

18.
J Appl Clin Med Phys ; 19(2): 93-102, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29322625

RESUMO

PURPOSE: Hypofractionated radiotherapy can reduce treatment durations and produce effects identical to those of conventionally fractionated radiotherapy for treating prostate cancer. Volumetric arc radiotherapy (VMAT) can decrease the treatment machine monitor units (MUs). Previous studies have shown that VMAT with multileaf collimator (MLC) rotation exhibits better target dose distribution. Thus, VMAT with MLC rotation warrants further investigation. METHODS AND MATERIALS: Ten patients with prostate cancer were included in this study. The prostate gland and seminal vesicle received 68.75 and 55 Gy, respectively, in 25 fractions. A dual-arc VMAT plan with a collimator angle of 0° was generated and the same constraints were used to reoptimize VMAT plans with different collimator angles. The conformity index (CI), homogeneity index (HI), gradient index (GI), normalized dose contrast (NDC), MU, and modulation complexity score (MCSV ) of the target were analyzed. The dose-volume histogram of the adjacent organs was analyzed. A Wilcoxon signed-rank test was used to compare different collimator angles. RESULTS: Optimum values of CI, HI, and MCSV were obtained with a collimator angle of 45°. The optimum values of GI, and NDC were observed with a collimator angle of 0°. In the rectum, the highest values of maximum dose and volume receiving 60 Gy (V60 Gy ) were obtained with a collimator angle of 0°, and the lowest value of mean dose (Dmean ) was obtained with a collimator angle of 45°. In the bladder, high values of Dmean were obtained with collimator angles of 75° and 90°. In the rectum and bladder, the values of V60 Gy obtained with the other tested angles were not significantly higher than those obtained with an angle of 0°. CONCLUSION: This study found that MLC rotation affects VMAT plan complexity and dosimetric distribution. A collimator angle of 45° exhibited the optimal values of CI, HI, and MCSv among all the tested collimator angles. Late side effects of the rectum and bladder are associated with high-dose volumes by previous studies. MLC rotation did not have statistically significantly higher values of V60 Gy in the rectum and bladder than did the 0° angle. We thought a collimator angle of 45° was an optimal angle for the prostate VMAT treatment plan. The findings can serve as a guide for collimator angle selection in prostate hypofractionated VMAT planning.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Prognóstico , Dosagem Radioterapêutica
19.
In Vivo ; 32(1): 203-209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29275321

RESUMO

To investigate the association between tumor response to thoracic radiotherapy and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma, we collected 48 patients treated between January 2010 and December 2013. Of the 18 patients with EGFR mutation, 15 (83.3%) had a single mutation, and three (16.7%) had double mutation. Different EGFR mutation subtypes exhibited different responses to radiotherapy. The identified double EGFR mutations were associated with reduction of residual tumor burden (RTB) after radiotherapy. In univariate analysis, EGFR mutations in exon 18, 20, and 21 and double EGFR mutation were significant factors predicting RTB. In multivariate analysis, exon 20 mutation was the only significant factor. Patients with EGFR mutation seemed to have longer mean overall survival (OS) compared to the group with wild-type EGFR (31.1 vs. 26.6 months, p=0.49). The median and mean OS in patients with double EGFR mutation vs. wild-type EGFR were 20.1 vs. 16.9 months and 28.9 vs. 26.6 months, respectively. Further studies with larger sample size are warranted to clarify the association of EGFR mutation status with the lung tumor response after radiotherapy.


Assuntos
Adenocarcinoma/radioterapia , Receptores ErbB/genética , Neoplasias Pulmonares/radioterapia , Mutação , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Neoplasia Residual/genética , Prognóstico , Resultado do Tratamento , Carga Tumoral/genética , Carga Tumoral/efeitos da radiação
20.
ACS Appl Mater Interfaces ; 9(48): 41845-41854, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29134795

RESUMO

A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiOx counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO2 and mp-Al2O3), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO2/mp-Al2O3/np-Au:NiOx as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA