RESUMO
In this paper, four species of Omphale Haliday, O.longigena Li & Li, sp. nov., O.longitarsus Li & Li, sp. nov., O.rectisulcus Li & Li, sp. nov., and O.xanthosoma Li & Li, sp. nov., are described as new to science; four species, O.brevibuccata Szelényi, O.connectens Graham, O.melina Yefremova & Kriskovich, and O.obscura (Förster) are reported from China for the first time; and the male of O.melina is reported for the first time in the world. A key to all known species of the genus Omphale in China is provided.
RESUMO
Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence. Moreover, upon in situ electron doping, the surface TFBs show a splitting with exotic doping evolution, with an order-of-magnitude increase in the bandwidth of the lower split band, and pinning of the upper band near the Fermi level. These experimental observations together with Hartree-Fock calculations suggest that correlation effects are important in this system. Our results demonstrate RG as a platform for investigating the rich interplay between nontrivial band topology, correlation effects, and interaction-driven symmetry-broken states.
RESUMO
Pyroptosis has been found to contribute to myocardial ischemia/reperfusion (I/R) injury, but the exact mechanisms that initiate myocardial pyroptosis are not fully elucidated. Sonic hedgehog (SHH) signaling is activated in heart suffered I/R, and intervention of SHH signaling has been demonstrated to protect heart from I/R injury. Caspase recruitment domain-containing protein 10 (CARD10)-B cell lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM) complex could transduce signals from the membrane and induce inflammatory pathways in non-hematopoietic cells, which could be a downstream effector of SHH signaling pathway. This study aims to explore the role of SHH signaling in I/R-induced myocardial pyroptosis and its relationship with the CBM complex. C57BL/6J mice were subjected to 45 min-ischemia followed by 24 h-reperfusion to establish a myocardial I/R model, and H9c2 cells underwent hypoxia/reoxygenation (H/R) to mimic myocardial I/R model in vitro. Firstly, SHH signaling was significantly activated in heart suffered I/R in an autocrine- or paracrine-dependent manner via its receptor PTCH1, and inhibition of SHH signaling decreased myocardial injury via reducing caspase-11-dependent pyroptosis, concomitant with attenuating CBM complex formation. Secondly, suppression of SHH signaling decreased protein kinase C α (PKCα) level, but inhibition of PKCα attenuated CBM complex formation without impacting the protein levels of SHH and PTCH1. Finally, disruption of the CBM complex prevented MALT1 from recruiting of TRAF6, which was believed to trigger the caspase-11-dependent pyroptosis. Based on these results, we conclude that inhibition of SHH signaling suppresses pyroptosis via attenuating PKCα-mediated CARD10-BCL10-MALT1 complex formation in mouse heart suffered I/R.
RESUMO
Oxidative stress contributes greatly to doxorubicin (DOX)-induced cardiotoxicity. Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key factor in DOX-induced myocardial oxidative injury. Recently, we found that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1)-dependent k48-linked ubiquitination was responsible for down-regulation of myocardial Nrf2 in DOX-treated mice. Micafungin, an antifungal drug, was identified as a potential MALT1 inhibitor. This study aims to explore whether micafungin can reduce DOX-induced myocardial oxidative injury and if its anti-oxidative effect involves a suppression of MALT1-dependent k48-linked ubiquitination of Nrf2. To establish the cardiotoxicity models in vivo and in vitro, mice were treated with a single dose of DOX (15 mg/kg, i.p.) and cardiomyocytes were incubated with DOX (1 µM) for 24 h, respectively. Using mouse model of DOX-induced cardiotoxicity, micafungin (10 or 20 mg/kg) was shown to improve cardiac function, concomitant with suppression of oxidative stress, mitochondrial dysfunction, and cell death in a dose-dependent manner. Similar protective roles of micafungin (1 or 5 µM) were observed in DOX-treated cardiomyocytes. Mechanistically, micafungin weakened the interaction between MALT1 and Nrf2, decreased the k48-linked ubiquitination of Nrf2 while elevated the protein levels of Nrf2 in both DOX-treated mice and cardiomyocytes. Furthermore, MALT1 overexpression counteracted the cardioprotective effects of micafungin. In conclusion, micafungin reduces DOX-induced myocardial oxidative injury via suppression of MALT1, which decreases the k48-linked ubiquitination of Nrf2 and elevates Nrf2 protein levels. Thus, micafungin may be repurposed for treating DOX-induced cardiotoxicity.
Assuntos
Doxorrubicina , Micafungina , Camundongos Endogâmicos C57BL , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ubiquitinação , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Doxorrubicina/toxicidade , Ubiquitinação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Micafungina/farmacologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Miocárdio/metabolismo , Miocárdio/patologiaRESUMO
Taking the typical yellow soil in Guizhou as the research object, four treatments were set upï¼ no fertilization ï¼CKï¼, single application of chemical fertilizer ï¼NPï¼, 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2ï¼NPMï¼], and 100% organic fertilizer instead of chemical nitrogen fertilizer ï¼Mï¼. The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon ï¼SOCï¼, total nitrogen ï¼TNï¼ content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index ï¼CPMIï¼ were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 ï¼NPMï¼ treatment significantly increased the contents of soil readily oxidizable organic carbon ï¼ROC333, ROC167ï¼, dissolved organic carbon ï¼DOCï¼, and microbial biomass carbon ï¼MBCï¼ by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 ï¼NPMï¼ treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 ï¼NPMï¼ and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components ï¼P<0.01ï¼. Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components ï¼P<0.05ï¼. Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.
Assuntos
Carbono , Fertilizantes , Glycine max , Nitrogênio , Compostos Orgânicos , Solo , Zea mays , Solo/química , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , China , Biomassa , Produtos Agrícolas/crescimento & desenvolvimentoRESUMO
In the context of measurement-induced entanglement phase transitions, the influence of quantum noises, which are inherent in real physical systems, is of great importance and experimental relevance. In this Letter, we present a comprehensive theoretical analysis of the effects of both temporally uncorrelated and correlated quantum noises on entanglement generation and information protection. This investigation reveals that entanglement within the system follows q^{-1/3} scaling for both types of quantum noises, where q represents the noise probability. The scaling arises from the Kardar-Parisi-Zhang fluctuation with effective length scale L_{eff}â¼q^{-1}. More importantly, the information protection timescales of the steady states are explored and shown to follow q^{-1/2} and q^{-2/3} scaling for temporally uncorrelated and correlated noises, respectively. The former scaling can be interpreted as a Hayden-Preskill protocol, while the latter is a direct consequence of Kardar-Parisi-Zhang fluctuations. We conduct extensive numerical simulations using stabilizer formalism to support the theoretical understanding. This Letter not only contributes to a deeper understanding of the interplay between quantum noises and measurement-induced phase transition but also provides a new perspective to understand the effects of Markovian and non-Markovian noises on quantum computation.
RESUMO
Aims: Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. Results: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. Innovation and Conclusion: The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1.
RESUMO
STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.
RESUMO
OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.
Assuntos
Autofagia , Proteína HMGB1 , Sistema de Sinalização das MAP Quinases , Placenta , Trofoblastos , Animais , Feminino , Humanos , Camundongos , Gravidez , Autofagia/fisiologia , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Knockout , Placenta/metabolismo , Placentação/fisiologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , MasculinoRESUMO
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-MetiltransferasesRESUMO
The poor efficiency and low immunogenicity of photodynamic therapy (PDT), and the immunosuppressive tumor microenvironment (ITM) lead to tumor recurrence and metastasis. In this work, TCPP-TER-Zn@RSV nanosheets (TZR NSs) that co-assembled from the endoplasmic reticulum (ER)-targeting photosensitizer TCPP-TER-Zn nanosheets (TZ NSs for short) and the autophagy promoting and indoleamine-(2, 3)-dioxygenase (IDO) inhibitor-like resveratrol (RSV) are fabricated to enhance antitumor PDT. TZR NSs exhibit improved therapeutic efficiency and amplified immunogenic cancer cell death (ICD) by ER targeting PDT and ER autophagy promotion. TZR NSs reversed the ITM with an increase of CD8+ T cells and reduce of immunosuppressive Foxp3 regulatory T cells, which effectively burst antitumor immunity thus clearing residual tumor cells. The ER-targeting TZR NSs developed in this paper presents a simple but valuable reference for high-efficiency tumor photodynamic immunotherapy.
Assuntos
Autofagia , Retículo Endoplasmático , Imunoterapia , Fotoquimioterapia , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Fotoquimioterapia/métodos , Imunoterapia/métodos , Autofagia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Nanoestruturas/química , Humanos , Linhagem Celular Tumoral , CamundongosRESUMO
High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.
Assuntos
Variação Genética , Oryza , Evolução Molecular , Porosidade , Melhoramento Vegetal , Sudeste Asiático , Plantas Daninhas/genética , Oryza/genéticaRESUMO
As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.
Assuntos
Poluentes Ambientais , Neuroblastoma , Humanos , Poluentes Ambientais/toxicidade , Plásticos , Linhagem Celular , Neurônios/fisiologia , Linhagem Celular TumoralRESUMO
Prostate cancer (PCa) patients with lymph node involvement (LNI) constitute a single-risk group with varied prognoses. Existing studies on this group have focused solely on those who underwent prostatectomy (RP), using statistical models to predict prognosis. This study aimed to develop an easily accessible individual survival prediction tool based on multiple machine learning (ML) algorithms to predict survival probability for PCa patients with LNI. A total of 3280 PCa patients with LNI were identified from the Surveillance, Epidemiology, and End Results (SEER) database, covering the years 2000-2019. The primary endpoint was overall survival (OS). Gradient Boosting Survival Analysis (GBSA), Random Survival Forest (RSF), and Extra Survival Trees (EST) were used to develop prognosis models, which were compared to Cox regression. Discrimination was evaluated using the time-dependent areas under the receiver operating characteristic curve (time-dependent AUC) and the concordance index (c-index). Calibration was assessed using the time-dependent Brier score (time-dependent BS) and the integrated Brier score (IBS). Moreover, the beeswarm summary plot in SHAP (SHapley Additive exPlanations) was used to display the contribution of variables to the results. The 3280 patients were randomly split into a training cohort (n = 2624) and a validation cohort (n = 656). Nine variables including age at diagnosis, race, marital status, clinical T stage, prostate-specific antigen (PSA) level at diagnosis, Gleason Score (GS), number of positive lymph nodes, radical prostatectomy (RP), and radiotherapy (RT) were used to develop models. The mean time-dependent AUC for GBSA, RSF, and EST was 0.782 (95% confidence interval [CI] 0.779-0.783), 0.779 (95% CI 0.776-0.780), and 0.781 (95% CI 0.778-0.782), respectively, which were higher than the Cox regression model of 0.770 (95% CI 0.769-0.773). Additionally, all models demonstrated almost similar calibration, with low IBS. A web-based prediction tool was developed using the best-performing GBSA, which is accessible at https://pengzihexjtu-pca-n1.streamlit.app/ . ML algorithms showed better performance compared with Cox regression and we developed a web-based tool, which may help to guide patient treatment and follow-up.
Assuntos
Excisão de Linfonodo , Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Excisão de Linfonodo/métodos , Linfonodos/patologia , Neoplasias da Próstata/patologia , Antígeno Prostático EspecíficoRESUMO
Sonic hedgehog (SHH) signaling is vital for cell differentiation and proliferation during embryonic development, yet its role in cardiac, cerebral, and vascular pathophysiology is under debate. Recent studies have demonstrated that several compounds of SHH signaling regulate ion channels, which in turn affect the behavior of target cells. Some of these ion channels are involved in the cardio-cerebrovascular system. Here, we first reviewed the SHH signaling cascades, then its interaction with ion channels, and their impact on cardio-cerebrovascular diseases. Considering the complex cross talk of SHH signaling with other pathways that also affect ion channels and their potential impact on the cardio-cerebrovascular system, we highlight the necessity of thoroughly studying the effect of SHH signaling on ion homeostasis, which could serve as a novel mechanism for cardio-cerebrovascular diseases. Activation of SHH signaling influence ion channels activity, which in turn influence ion homeostasis, membrane potential, and electrophysiology, could serve as a novel strategy for cardio-cerebrovascular diseases.
Assuntos
Transtornos Cerebrovasculares , Proteínas Hedgehog , Feminino , Gravidez , Humanos , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Diferenciação Celular , Canais Iônicos/metabolismoRESUMO
Impaired endothelium-dependent vasodilation in atherosclerosis is a high-risk factor for myocardial infarction and ischemic stroke, and inflammation, necroptosis and apoptosis contribute to endothelial dysfunction in atherosclerosis. Although DL-3-n-butylphthalide (NBP) has been widely used in treating ischemic stroke, its effect on endothelium-dependent vasodilation remains unknown. This study aims to explore whether NBP is able to improve endothelium-dependent vasodilation in atherosclerosis and the underlying mechanisms. Male ApoE-/- mice were fed with a high-fat diet (HFD) for 9-16 weeks to establish a model of atherosclerosis. NBP were given to the mice after eating HFD for 6 weeks and atorvastatin served as a positive control. The endothelium-dependent vasodilation, the blood flow velocity, the atherosclerotic lesion area, the serum levels of lipids, inflammatory cytokines and necroptosis-relevant proteins (RIPK1, RIPK3 and MLKL), and the endothelial necroptosis and apoptosis within the aorta were measured. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL) for 48 h to mimic endothelial injury in atherosclerosis, lactate dehydrogenase release, the ratio of necroptosis and apoptosis and the expression of necroptosis-relevant proteins were examined. Similar to atorvastatin, NBP improves endothelium-dependent vasodilation, decreases aortic flow velocity and reduces atherosclerotic lesion area in HFD-fed ApoE-/- mice, concomitant with a reduction in serum lipids, inflammatory cytokines and necroptosis-relevant proteins, and endothelial necroptosis and apoptosis. Consistently, NBP inhibited necroptosis and apoptosis in ox-LDL-treated HUVECs. Based on these observations, we conclude that NBP exerts beneficial effects on improving the endothelium-dependent vasodilation in atherosclerosis via suppressing inflammation, endothelial necroptosis and apoptosis.
Assuntos
Aterosclerose , AVC Isquêmico , Masculino , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Vasodilatação , Atorvastatina/farmacologia , Necroptose , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Inflamação/metabolismo , Endotélio/metabolismo , Citocinas/metabolismo , AVC Isquêmico/metabolismo , Apoptose , Apolipoproteínas E/genética , Camundongos KnockoutRESUMO
Aquatic invertebrates are the organisms most susceptible to ammonia toxicity. However, the toxic effects of ammonia on invertebrates are still poorly understood. This study reviews the research progress in ammonia toxicology for the period from 1986 to 2023, focusing on the effects on invertebrates. Through examining the toxic effects of ammonia at different levels of organization (community, individual, tissue and physiology, and molecular) as well as the results from omics studies, we determined that the most significant effects were on the reproductive capacity of invertebrates and the growth of offspring, although different populations show variation in their tolerance to ammonia, and tissues have varied potential to respond to ammonia stress. A multicomponent analysis is an in-depth technique employed in toxicological studies, as it can be used to explore the enrichment pathways and functional genes expressed under ammonia stress. This study comprehensively discusses ammonia toxicity from multiple aspects in order to provide new insights into the toxic effects of ammonia on aquatic invertebrates.
RESUMO
In this paper, a new species of Entedon Dalman, E.flavifemursp. nov. is described from Tibet and three species, E.albifemur Kamijo, E.crassiscapus Erdös, and E.nomizonis Kamijo are reported from China for the first time. A detailed description and illustrations of the new species are provided, as well as diagnoses and illustrations of the three newly recorded species.
RESUMO
All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100-150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants.