Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4603, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816404

RESUMO

Producing valuable chemicals like ethylene via catalytic carbon monoxide conversion is an important nonpetroleum route. Here we demonstrate an electrochemical route for highly efficient synthesis of multicarbon (C2+) chemicals from CO. We achieve a C2+ partial current density as high as 4.35 ± 0.07 A cm-2 at a low cell voltage of 2.78 ± 0.01 V over a grain boundary-rich Cu nanoparticle catalyst in an alkaline membrane electrode assembly (MEA) electrolyzer, with a C2+ Faradaic efficiency of 87 ± 1% and a CO conversion of 85 ± 3%. Operando Raman spectroscopy and density functional theory calculations reveal that the grain boundaries of Cu nanoparticles facilitate CO adsorption and C - C coupling, thus rationalizing a qualitative trend between C2+ production and grain boundary density. A scale-up demonstration using an electrolyzer stack with five 100 cm2 MEAs achieves high C2+ and ethylene formation rates of 118.9 mmol min-1 and 1.2 L min-1, respectively, at a total current of 400 A (4 A cm-2) with a C2+ Faradaic efficiency of 64%.

2.
Chem Commun (Camb) ; 60(42): 5550-5553, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700243

RESUMO

Cu2O doped with atomically dispersed Rh (Rh:Cu2O) is synthesized with a wet chemical method. It shows higher activity and faradaic efficiency at lower overpotential for reduction of CO2 to C2+ products, especially C2H4, than pristine Cu2O. We found that introducing Rh promotes CO2 adsorption, *CO hydrogenation to *CHO and their coupling to O*CCHO intermediates, which contributes to enhanced catalytic performance.

3.
Angew Chem Int Ed Engl ; : e202404861, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738502

RESUMO

Solid oxide electrolysis cells are prospective approaches for CO2 utilization but face significant challenges due to the sluggish reaction kinetics and poor stability of the fuel electrodes. Herein, we strategically addressed the long-standing trade-off phenomenon between enhanced exsolution and improved structural stability via topotactic ion exchange. The surface dynamic reconstruction of the MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ (LSCIr) catalyst was visualized at the atomic scale. Compared with the Ir@LSCIr interface, the in situ self-assembled Ir@MnOx/LSCIr interface exhibited greater CO2 activation and easily removable carbonate intermediates, thus reached a 42% improvement in CO2 electrolysis performance at 1.6 V. Furthermore, an improved CO2 electrolysis stability was achieved due to the uniformly wrapped MnOx shell of the Ir@MnOx/LSCIr cathode. Our approach enables a detailed understanding of the dynamic microstructure evolution at active interfaces and provides a roadmap for the rational design and evaluation of efficient metal/oxide catalysts for CO2 electrolysis.

4.
Environ Sci Technol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622088

RESUMO

Hydrogen sulfide (H2S), a toxic gas abundant in natural gas fields and refineries, is currently being removed mainly via the Claus process. However, the emission of sulfur-containing pollutants is hard to be prevented and the hydrogen element is combined to water. Herein, we report an electron-mediated off-field electrocatalysis approach (OFEC) for complete splitting of H2S into H2 and S under ambient conditions. Fe(III)/Fe(II) and V(II)/V(III) redox mediators are used to fulfill the cycles for H2S oxidation and H2 production, respectively. Fe(III) effectively removes H2S with almost 100% conversion during its oxidation process. The H+ ions are reduced by V(II) on a nonprecious metal catalyst, tungsten carbide. The mediators are regenerated in an electrolyzer at a cell voltage of 1.05 V, close to the theoretical potential difference (1.02 V) between Fe(III)/Fe(II) and V(II)/V(III). In a laboratory bench-scale plant, the energy consumption for the production of H2 from H2S is estimated to be 2.8 kWh Nm-3 H2 using Fe(III)/Fe(II) and V(II)/V(III) mediators and further reduced to about 0.5 kWh Nm-3 H2 when employing well-designed heteropolyacid/quinone mediators. OFEC presents a cost-effective approach for the simultaneous production of H2 and elemental sulfur from H2S, along with the complete removal of H2S from industrial processes. It also provides a practical platform for electrochemical reactions involving solid precipitation and organic synthesis.

5.
Nat Commun ; 15(1): 3100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600159

RESUMO

In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.

6.
Nature ; 628(8007): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570689

RESUMO

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

7.
J Am Chem Soc ; 146(8): 5523-5531, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367215

RESUMO

An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.

8.
Small ; : e2310147, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377273

RESUMO

Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3  S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2 -to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.

9.
Angew Chem Int Ed Engl ; 63(5): e202313361, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088045

RESUMO

Cathodic CO2 adsorption and activation is essential for high-temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs). However, the component of oxygen ionic conductor in the cathode displays limited electrocatalytic activity. Herein, stable single Ruthenium (Ru) atoms are anchored on the surface of oxygen ionic conductor (Ce0.8 Sm0.2 O2-δ , SDC) via the strong covalent metal-support interaction, which evidently modifies the electronic structure of SDC surface for favorable oxygen vacancy formation and enhanced CO2 adsorption and activation, finally evoking the electrocatalytic activity of SDC for high-temperature CO2 electrolysis. Experimentally, SOEC with the Ru1 /SDC-La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ cathode exhibits a current density as high as 2.39 A cm-2 at 1.6 V and 800 °C. This work expands the application of single atom catalyst to the high-temperature electrocatalytic reaction in SOEC and provides an efficient strategy to tailor the electronic structure and electrocatalytic activity of SOEC cathode at the atomic scale.

10.
Adv Mater ; 36(7): e2308979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009644

RESUMO

Colloidal quantum-dot (QD) lasing is normally achieved in close-packed solid-state films, as a high QD volume fraction is required for stimulated emission to outcompete fast Auger decay of optical-gain-active multiexciton states. Here a new type of liquid optical-gain medium is demonstrated, in which compact compositionally-graded QDs (ccg-QDs) that feature strong suppression of Auger decay are liquefied using a small amount of solvent. Transient absorption measurements of ccg-QD liquid suspensions reveal broad-band optical gain spanning a wide spectral range from 560 (green) to 675 nm (red). The gain magnitude is sufficient to realize a two-color amplified spontaneous emission (ASE) at 637 and 594 nm due to the band-edge (1S) and the excited-state (1P) transition, respectively. Importantly, the ASE regime is achieved using quasicontinuous excitation with nanosecond pulses. Furthermore, the ASE is highly stable under prolonged excitation, which stands in contrast to traditional dyes that exhibit strong degradation under identical excitation conditions. These observations point toward a considerable potential of high-density ccg-QD suspensions as liquid, dye-like optical gain media that feature readily achievable spectral tunability and stable operation under intense photoexcitation.

11.
Nat Commun ; 14(1): 5716, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714864

RESUMO

Molybdenum supported on zeolites has been extensively studied as a catalyst for methane dehydroaromatization. Despite significant progress, the actual intermediates and particularly the first C-C bond formation have not yet been elucidated. Herein we report evolution of methyl radicals during non-oxidative methane activation over molybdenum single sites, which leads selectively to value-added chemicals. Operando X-ray absorption spectroscopy and online synchrotron vacuum ultraviolet photoionization mass spectroscopy in combination with electron microscopy and density functional theory calculations reveal the essential role of molybdenum single sites in the generation of methyl radicals and that the formation rate of methyl radicals is linearly correlated with the number of molybdenum single sites. Methyl radicals transform to ethane in the gas phase, which readily dehydrogenates to ethylene in the absence of zeolites. This is essentially similar to the reaction pathway over the previously reported SiO2 lattice-confined single site iron catalyst. However, the availability of a zeolite, either in a physical mixture or as a support, directs the subsequent reaction pathway towards aromatization within the zeolite confined pores, resulting in benzene as the dominant hydrocarbon product. The findings reveal that methyl radical chemistry could be a general feature for metal single site catalysis regardless of the support (either zeolites MCM-22 and ZSM-5 or SiO2) whereas the reaction over aggregated molybdenum carbide nanoparticles likely facilitates carbon deposition through surface C-C coupling. These findings allow furthering the fundamental insights into non-oxidative methane conversion to value-added chemicals.

12.
Angew Chem Int Ed Engl ; 62(32): e202307057, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285520

RESUMO

Perovskites exhibit excellent high-temperature oxygen evolution reaction (OER) activities as the anodes of solid oxide electrolysis cells (SOECs). However, the relationship between ion ordering and OER performances is rarely investigated. Herein, a series of PrBaCo2-x Fex O5+δ perovskites with tailored ion orderings are constructed. Physicochemical characterizations and density functional theory calculations confirm that the oxygen bulk migration and surface transport capacities as well as the OER activities are promoted by the A-site cation ordering, but weakened by the oxygen vacancy ordering. Hence, SOEC with the A-site-ordered and oxygen-vacancy-disordered PrBaCo2 O5+δ anode exhibits the highest performance of 3.40 A cm-2 at 800 °C and 2.0 V. This work sheds light on the critical role of ion orderings in the high-temperature OER performance and paves a new way for screening novel anode materials of SOECs.

13.
Nat Commun ; 14(1): 1412, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918568

RESUMO

Exploring durable electrocatalysts with high activity for oxygen evolution reaction (OER) in acidic media is of paramount importance for H2 production via polymer electrolyte membrane electrolyzers, yet it remains urgently challenging. Herein, we report a synergistic strategy of Rh doping and surface oxygen vacancies to precisely regulate unconventional OER reaction path via the Ru-O-Rh active sites of Rh-RuO2, simultaneously boosting intrinsic activity and stability. The stabilized low-valent catalyst exhibits a remarkable performance, with an overpotential of 161 mV at 10 mA cm-2 and activity retention of 99.2% exceeding 700 h at 50 mA cm-2. Quasi in situ/operando characterizations demonstrate the recurrence of reversible oxygen species under working potentials for enhanced activity and durability. It is theoretically revealed that Rh-RuO2 passes through a more optimal reaction path of lattice oxygen mediated mechanism-oxygen vacancy site mechanism induced by the synergistic interaction of defects and Ru-O-Rh active sites with the rate-determining step of *O formation, breaking the barrier limitation (*OOH) of the traditional adsorption evolution mechanism.

14.
ACS Appl Mater Interfaces ; 14(50): 55644-55652, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507662

RESUMO

A face-centered tetragonal (fct) AuCu particle with a size of 7.1 nm and an Au/Cu molar ratio of 1/1 was coated by a silica shell of 6 nm thickness. Segregation of Cu atoms from the metal particle under an oxidative atmosphere precisely mediated the CuOx-Au interfacial structure by simply varying the temperature. As raising the temperature from 473 to 773 K, more Cu atoms emigrated from the AuCu particle and were oxidized into CuOx layers that grew up to 0.8 nm in thickness. Simultaneously, the size of the Au-rich particle lowered moderately while the crystalline structure transformed from the fct phase into the face-centered cubic (fcc) phase. The CuOx-Au interface shifted from the CuOx monolayer bound to Au single-atoms to Au@CuOx core-shell geometry, while the catalytic activity for CO oxidation at 433 K decreased dramatically. Moreover, a sharp loss in activity was observed as the crystal-phase transition occurred. This change in catalytic performance was ascribed to the geometrical configuration at the interfacial sites: the synergetic effect between the fct-AuCu particle and CuOx monolayer contributed to the much higher activity, whereas the fcc-AuCu/Au particle weakened its interaction with the thicker CuOx layer and thus decreased the activity.

15.
Environ Technol ; : 1-10, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172646

RESUMO

Chlorophenols in urban high organic wastewater increases, which plays an inhibitory role in the process of anaerobic fermentation and methanogenesis. The release rules of extracellular polymers (EPS) and soluble microbial products (SMP) and the production of methane from anaerobic granular sludge were evaluated by spectroscopic analysis. The methane production was reduced by 21.6%, 41.4% and 50.5% respectively by adding 2,4-DCP of different concentrations (25, 50 and 100 mg/L). Activity tests of methanogenic functional enzymes indicated that F420 was more susceptible to the toxic of 2, 4-DCP than Acetyl-CoA and NADH. The decrease in methane production was due to the reduction in the activity of conversion enzymes rather than the loss of crucial precursors for methanogenesis. 2,4-DCP disintegrated the protein 'shell' of anaerobic granular sludge by destroying α-helix and ß-sheet structures. After the protein 'shell' in EPS was destroyed, 2, 4-DCP entered the interior of granular, which inhibited the activity of functional enzymes and affected the process of acidogenesis and methanogenesis. At the same time, due to the partial rupture of the cells after being affected by the toxicity of 2,4-DCP, the protein material could be dissolved into the aqueous phase and complexed with 2,4-DCP to reduce the toxic effect of 2,4-DCP.

16.
Chemosphere ; 287(Pt 3): 132249, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555584

RESUMO

Nano-zero-valent iron (nZVI), as a typical nano-material, has been recently used in wastewater treatment and combination with bioreactors. Using nZVI coupled denitrification system research the effect and influence of nZVI enhanced denitrification sludge on the degradation of toxic compounds and system performance. The nZVI coupled denitrification system showed better resistance to 2,6-DCP impact, and the concentrations of effluent NO2- and NO3- were below 2.0 mg/L. At the same time, the addition of nZVI enabled the denitrification system to quickly adapt to the toxic environment of 2,6-DCP within 15 days, and the degradation efficiency of 2,6-DCP reached 99.9%. The released SMP reduced after nZVI coupled with denitrification sludge in 2,6-DCP environment, which could improve the effluent water quality. Nuclear magnetic resonance spectroscopy showed that the addition of nZVI would change the structure of EPS in denitrification sludge. After 90 days of operation, the dominant bacteria in the denitrifying sludge have undergone great changes. Moreover, Thauera was responsible as the dominant bacteria for degrading 2,6-DCP in the denitrification system. The increased in the proportion of functional bacteria with nitrate_reduction, nitrogen_respiration, nitrate_respiration and nitrite_respiration in the presence of NZVI further reveals the mechanism of enhanced denitrification.


Assuntos
Desnitrificação , Nitratos , Clorofenóis , Ferro , Esgotos
17.
Angew Chem Int Ed Engl ; 60(14): 7659-7663, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33411389

RESUMO

Microstructural optimization (such as thickness and preferred orientation) is a major concern for performance enhancement of zeolite membranes. In this study, we demonstrated that the introduction of hierarchy easily enabled concurrent thickness reduction and orientation control of zeolite membranes. Specifically, hierarchical MFI zeolite membranes comprising higher degree of (h0h) preferentially oriented ultrathin (ca. 390 nm) selective top layers and porous intermediate layers on porous α-Al2 O3 substrates were fabricated. The use of hollow-structured MFI nanoseeds and the employment of single-mode microwave heating during membrane processing were found indispensable for the preparation of MFI zeolite membranes with superior butane isomer separation performance, thereby surpassing the current n-/i-butane selectivity versus n-butane permeance trade-off limits of MFI zeolite membranes prepared via solution-based synthetic protocols.

18.
Nat Commun ; 11(1): 5811, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199710

RESUMO

The strong metal-support interaction (SMSI) has long been studied in heterogonous catalysis on account of its importance in stabilizing active metals and tuning catalytic performance. As a dynamic process taking place at the metal-support interface, the SMSI is closely related to the metal surface properties which are usually affected by the size of metal nanoparticles (NPs). In this work we report the discovery of a size effect on classical SMSI in Au/TiO2 catalyst where larger Au particles are more prone to be encapsulated than smaller ones. A thermodynamic equilibrium model was established to describe this phenomenon. According to this finding, the catalytic performance of Au/TiO2 catalyst with uneven size distribution can be improved by selectively encapsulating the large Au NPs in a hydrogenation reaction. This work not only brings in-depth understanding of the SMSI phenomenon and its formation mechanism, but also provides an alternative approach to refine catalyst performance.

19.
J Environ Manage ; 265: 110542, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275249

RESUMO

The system performance, sludge property and microbial community shift were evaluated in a nitrifying sludge (NS) bioreactor for simultaneous treating p-Nitrophenol (PNP) and high ammonia wastewater. After long-term acclimation for 80 days, the removal efficiencies of PNP and NH4+-N reached to 99.9% and 99.5%, respectively. Meanwhile, the effluent PNP gradually decreased from 7.9 to 0.1 mg/L by acclimation of sludge. The particle size of NS increased from 115.2 µm to 226.3 µm accompanied by the decreased zeta potential as a self-protection strategy. The presence of PNP exposure altered the effluent soluble microbial products (SMP) fluorescent components and molecular composition. The increase in the relative abundance of Thauera, Nitrospiraceae and Nitrosomonas indicated the nitrification and denitrification capacities of NS increased, which maybe the PNP cometabolic biodegradation effect. Moreover, Ignavibacteria and Aeromonas were responsible as the dominant bacteria for degrading PNP in the nitrifying system.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Nitrificação , Nitrogênio , Nitrofenóis
20.
ACS Appl Mater Interfaces ; 12(13): 15320-15327, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160461

RESUMO

Layered molecular sieve membranes containing uniform interlayer galleries have offered unprecedented opportunities to reach a performance far beyond the Robeson upper bound line. In this study, we took the initiative to prepare layered zirconium phenylphosphonate (ZrPP) molecular sieve membranes with optimized microstructure on tetragonal zirconia (t-ZrO2) buffer layer-modified porous α-Al2O3 substrates by facile in situ hydrothermal growth. Relying on the 3.2 Å-sized gallery height and preferential CO2 adsorption behavior, prepared ZrPP membranes showed exceptional H2/CO2 selectivity (>100) as well as considerable H2 permeability. Furthermore, extraordinary thermal, mechanical, and chemical stability of ZrPP membranes made them potentially attractive for long-term operations under harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA