Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 252(4): 536-546, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577717

RESUMO

BACKGROUND: Hox genes encode transcription factors that are important for establishing the body plan. Hoxa5 is a member of the mammalian Hox5 paralogous group that regulates the patterning and morphology of the cervical-thoracic region of the axial skeleton. Hoxa5 also plays crucial functions in lung morphogenesis. RESULTS: We generated a Hoxa5eGFP reporter mouse line using CRISPR technology, allowing real-time visualization of Hoxa5 expression. Hoxa5eGFP recapitulates reported embryonic Hoxa5 mRNA expression patterns. Specifically, Hoxa5eGFP can be visualized in the developing mouse neural tube, somites, lung, diaphragm, foregut, and midgut, among other organs. In the stomach, posteriorly biased Hoxa5eGFP expression correlates with a drastic morphological reduction of the corpus in Hox5 paralogous mutants. Expression of Hoxa5eGFP in the lung continues in all lung fibroblast populations through postnatal and adult stages. CONCLUSIONS: We identified cell types that express Hoxa5 in postnatal and adult mouse lungs, including various fibroblasts and vascular endothelial cells. This reporter line will be a powerful tool for studies of the function of Hoxa5 during mouse development, homeostasis, and disease processes.


Assuntos
Células Endoteliais , Proteínas de Homeodomínio , Camundongos , Animais , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Pulmão , Genes Homeobox , Organogênese/genética , Fosfoproteínas/genética , Mamíferos/metabolismo
2.
Front Cell Dev Biol ; 9: 767454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901011

RESUMO

Hox genes encode transcription factors that are critical for embryonic skeletal patterning and organogenesis. The Hoxa5, Hoxb5, and Hoxc5 paralogs are expressed in the lung mesenchyme and function redundantly during embryonic lung development. Conditional loss-of-function of these genes during postnatal stages leads to severe defects in alveologenesis, specifically in the generation of the elastin network, and animals display bronchopulmonary dysplasia (BPD) or BPD-like phenotype. Here we show the surprising results that mesenchyme-specific loss of Hox5 function at adult stages leads to rapid disruption of the mature elastin matrix, alveolar enlargement, and an emphysema-like phenotype. As the elastin matrix of the lung is considered highly stable, adult disruption of the matrix was not predicted. Just 2 weeks after deletion, adult Hox5 mutant animals show significant increases in alveolar space and changes in pulmonary function, including reduced elastance and increased compliance. Examination of the extracellular matrix (ECM) of adult Tbx4rtTA; TetOCre; Hox5a f a f bbcc lungs demonstrates a disruption of the elastin network although the underlying fibronectin, interstitial collagen and basement membrane appear unaffected. An influx of macrophages and increased matrix metalloproteinase 12 (MMP12) are observed in the distal lung 3 days after Hox5 deletion. In culture, fibroblasts from Hox5 mutant lungs exhibit reduced adhesion. These findings establish a novel role for Hox5 transcription factors as critical regulators of lung fibroblasts at adult homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA