Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946343

RESUMO

Perineuronal nets (PNN) is condensed extracellular matrix (ECM) in the central nervous system (CNS), which surrounds cell soma, axon initial segments, and synapses. In the brain, most neurons surrounded by PNN are interneurons, especially the parvalbumin-expressing interneurons (PVI). The formation of PNN is involved in the PVI maturation as well as the onset and closure of critical periods for developmental plasticity end. Dysfunction of PVI can lead to some neurological disorders, such as schizophrenia, bipolar depression, and Alzheimer's disease. Similarly, PNN assembling abnormalities are often observed in human patients and animal disease models. PNN is thought to have a neuroprotective effect and interact with signaling molecules to regulate synaptic plasticity and neuronal activity. In this review, we provide an overview of the composition, structure, and functions of PNN. In addition, we highlight abnormal changes in PNN components in pathological conditions. Understanding the roles of different components of PNN will bring us a new perspective on brain plasticity and neurological disorders.

2.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955427

RESUMO

Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported that metformin exerts beneficial effects on many neurological disorders, including major depressive disorder (MDD), Alzheimer's disease (AD) and Fragile X syndrome (FXS); however, the mechanism underlying metformin in the brain is not fully understood. Neurotransmission between neurons is fundamental for brain functions, and its defects have been implicated in many neurological disorders. Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance) in neural networks. In this review, we focused on and reviewed the roles of metformin in brain functions and related neurological disorders, which would give us a deeper understanding of the actions of metformin in the brain.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Metformina , Doenças do Sistema Nervoso , Encéfalo , Transtorno Depressivo Maior/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA