Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Ophthalmol ; 265: 61-72, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555010

RESUMO

PURPOSE: To assess the cone photoreceptors' morphology and associated retinal sensitivity in laser-induced retinopathy (LIR) using adaptive optics scanning laser ophthalmoscopy (AO-SLO) and microperimetry (MP). DESIGN: Cohort study. METHODS: This study included 13 patients (15 eyes) with LIR and 38 age-matched healthy volunteers (38 eyes). Participants underwent comprehensive evaluations including AO-SLO, MP, and spectral-domain OCT. Lesion morphology, cone density, dispersion, and regularity in AO-SLO were assessed and correlated with visual function. RESULTS: In AO-SLO images, LIR lesions were predominantly characterized by hyporeflective regions, suggesting potential cone loss at the fovea, accompanied by the presence of sizable clumps of hyperreflective material within these lesions. The average size of lesions in affected eyes was 97,128±107,478 µm², ranging from 6705 to 673,348 µm². Compared with the healthy contralateral eye and control group, LIR demonstrated significantly reduced cone density, increased cone dispersion, and notably decreased cone regularity in all 4 quadrants at 3° eccentricity (all P values < .05). Lesion morphology in AO-SLO correlated with ellipsoid zone defects observed in OCT, showing a positive correlation in size (r = 0.84, P < .001) but not with retinal sensitivities (P = .09). Similarly, cone density at 3° eccentricity did not correlate with retinal sensitivities (P = .13). CONCLUSIONS AND RELEVANCE: The study provides crucial insights into the morphologic and functional impacts of LIR on cone photoreceptors, revealing significant morphologic changes in cones that do not consistently align with functional outcomes. This research highlights the need for continued exploration into the relationship between retinal structure and function in LIR, and the importance of heightened public awareness and preventive strategies to mitigate the risk of LIR.

2.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337903

RESUMO

As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.

3.
FASEB J ; 37(11): e23250, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819682

RESUMO

Vision loss and blindness are frequently caused by photoreceptor degeneration, for example in age-related macular degeneration and retinitis pigmentosa. However, there is no effective medicine to treat these photoreceptor degeneration-related diseases. Cell senescence is a common phenotype in many diseases; however, few studies have reported whether it occurs in photoreceptor degeneration diseases. Herein, we identified that cell senescence is associated with photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU, a commonly used photoreceptor degeneration model), presented as increased senescence-associated ß-galactosidase activity, DNA damage, oxidative stress and inflammation-related cytokine Interleukin 6 (IL6), and upregulation of cyclin p21 or p16. These results suggested that visual function might be protected using anti-aging treatment. Furthermore, Hyperoside is reported to help prevent aging in various organs. In this study, we showed that Hyperoside, delivered intravitreally, alleviated photoreceptor cell senescence and ameliorated the functional and morphological degeneration of the retina in vivo and in vitro. Importantly, Hyperoside attenuated the MNU-induced injury and aging of photoreceptors via AMPK-ULK1 signaling inhibition. Taken together, our results demonstrated that Hyperoside can prevent MNU-induced photoreceptor degeneration by inhibiting cell senescence via the AMPK-ULK1 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Degeneração Retiniana , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Senescência Celular , Modelos Animais de Doenças , Metilnitrosoureia/toxicidade , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/prevenção & controle
4.
Ecotoxicol Environ Saf ; 266: 115547, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806130

RESUMO

China is conducting ecological restoration work in urban water bodies. Under anoxic and anaerobic conditions, pollutants transform and produce odorous and black substances, deteriorating the water quality, which is a significant problem in urban water bodies. Vallisneria natans has received widespread attention for its applications in water treatment and restoration. However, the efficiency by which V. natans reduces water pollution and allows sediment remediation requires further improvement. Therefore, in this study, we investigated the effect of V. natans coupled with carbon fiber on the restoration of water bodies and sediment compared with the control group that grew V. natans without carbon fiber. The oxidation-reduction potential (ORP) was selected as the main evaluation index for the water and sediment. Dissolved oxygen in the water and total organic carbon and total nitrogen (TN) in the sediment were also evaluated. V. natans coupled with carbon fiber significantly increased the ORP; that of surface sediment increased by 50 % and that of the water body increased by 60 % compared with the sediment without any bioremediation. Chemical oxygen demand, total phosphorous, and TN in water decreased by 61.2 %, 22.9 %, and 48.3 %, respectively. These results indicate that planting V. natans with carbon fiber can reduce pollutants in water (including humus) and sediments, effectively improving ORP in water and sediment.


Assuntos
Poluentes Ambientais , Hydrocharitaceae , Poluentes Químicos da Água , Fibra de Carbono , Biodegradação Ambiental , Poluição da Água , Fósforo , Nitrogênio/análise , Poluentes Químicos da Água/análise
5.
Front Neurosci ; 17: 1259622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811327

RESUMO

Introduction: Photoreceptor degenerative diseases are characterized by the progressive death of photoreceptor cells, resulting in irreversible visual impairment. However, the role of competing endogenous RNA (ceRNA) in photoreceptor degeneration is unclear. We aimed to explore the shared ceRNA regulation network and potential molecular mechanisms between primary and secondary photoreceptor degenerations. Methods: We established animal models for both types of photoreceptor degenerations and conducted retina RNA sequencing to identify shared differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs). Using ceRNA regulatory principles, we constructed a shared ceRNA network and performed function enrichment and protein-protein interaction (PPI) analyses to identify hub genes and key pathways. Immune cell infiltration and drug-gene interaction analyses were conducted, and hub gene expression was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results: We identified 37 shared differentially expressed lncRNAs, 34 miRNAs, and 247 mRNAs and constructed a ceRNA network consisting of 3 lncRNAs, 5 miRNAs, and 109 mRNAs. Furthermore, we examined 109 common differentially expressed genes (DEGs) through functional annotation, PPI analysis, and regulatory network analysis. We discovered that these diseases shared the complement and coagulation cascades pathway. Eight hub genes were identified and enriched in the immune system process. Immune infiltration analysis revealed increased T cells and decreased B cells in both photoreceptor degenerations. The expression of hub genes was closely associated with the quantities of immune cell types. Additionally, we identified 7 immune therapeutical drugs that target the hub genes. Discussion: Our findings provide new insights and directions for understanding the common mechanisms underlying the development of photoreceptor degeneration. The hub genes and related ceRNA networks we identified may offer new perspectives for elucidating the mechanisms and hold promise for the development of innovative treatment strategies.

6.
Transl Vis Sci Technol ; 12(8): 22, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642634

RESUMO

Purpose: To evaluate the retinal artery angles in high axial myopia and assess the correlation with other morphometric and functional parameters. Methods: This cross-sectional study included 112 eyes of 112 patients with high axial myopia. Based on axial length (AL), the participants were divided into three groups: group 1 (26 ≤ AL < 28 mm), group 2 (28 ≤ AL < 31 mm), and group 3 (≥31 mm). Scanning laser ophthalmoscopy imaging was used to analyze the retinal artery angle (Yugami correlated angle [YCA]). Retinal vascular densities (VDs) in both superficial capillary plexuses (SCPs) and deep capillary plexuses were evaluated. Fixation behavior, including retinal mean sensitivity (MS), macular fovea 2°, 4° fixation rate (P1, P2), and 68.2% bivariate contour ellipse area, were analyzed by microperimetry. Finally, the correlation between YCAs and AL, VDs, best-corrected visual acuity (BCVA), and fixation behavior was assessed. Results: The YCAs showed significant differences among the three groups (all P < 0.001, respectively). Compared to group 1, the YCA decreased in group 2 (P < 0.001) and continued to decrease in group 3 (P = 0.043). The correlation analysis revealed that smaller YCAs (YCA, YCA1/2, YCA1/4) were positively correlated with the longer AL (ρ = 0.580, 0.545, 0.448, P < 0.001) and lower VDs in any sector in SCPs (all P ≤ 0.05). Furthermore, smaller YCAs were positively correlated with decreased BCVA (ρ = 0.392, 0.387, 0.262; all P < 0.001) and reduced MS (ρ= 0.300, 0.269, 0.244; all P < 0.05). Conclusions: Smaller YCAs were correlated with longer AL, lower VD in SCP, decreased BCVA, and reduced MS. The YCAs might reflect vascular deformation caused by axial elongation and could potentially be useful in predicting visual function in high axial myopia. Translational Relevance: The quantitative analysis of YCAs in fundus photography holds potential clinical value in predicting visual function in high axial myopia.


Assuntos
Miopia , Artéria Retiniana , Humanos , Estudos Transversais , Miopia/diagnóstico , Fóvea Central/diagnóstico por imagem , Oftalmoscopia
7.
Front Plant Sci ; 14: 1187552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229128

RESUMO

Nitrogen (N) is an essential factor for crop yield. Here, we characterized 605 genes from 25 gene families that form the complex gene networks of N utilization pathway in Brassica napus. We found unequal gene distribution between the An- and Cn-sub-genomes, and that genes derived from Brassica rapa were more retained. Transcriptome analysis indicated that N utilization pathway gene activity shifted in a spatio-temporal manner in B. napus. A low N (LN) stress RNA-seq of B. napus seedling leaves and roots was generated, which proved that most N utilization related genes were sensitive to LN stress, thereby forming co-expression network modules. Nine candidate genes in N utilization pathway were confirmed to be significantly induced under N deficiency conditions in B. napus roots, indicating their potential roles in LN stress response process. Analyses of 22 representative species confirmed that the N utilization gene networks were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Consistent with B. napus, the genes in this pathway commonly showed a wide and conserved expression profile in response to N stress in other plants. The network, genes, and gene-regulatory modules identified here represent resources that may enhance the N utilization efficiency or the LN tolerance of B. napus.

8.
Chem Commun (Camb) ; 59(34): 5098-5101, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039059

RESUMO

Herein, quinary CoFeNiCuCr sulfide nanosheets with a high-entropy feature and rough surface were fabricated via a topotactic transformation pathway from high-entropy layered metal hydroxides, and display facile pre-oxidation and improved intrinsic activity towards the robust oxygen evolution reaction.

10.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563356

RESUMO

Nitrate transporter 2 (NRT2) plays an essential role in Nitrogen (N) uptake, transport, utilization, and stress resistance. In this study, the NRT2 gene family in two sequenced Brassica napus ecotypes were identified, including 31 genes in 'Zhongshuang11' (BnaZSNRT2s) and 19 in 'Darmor-bzh' (BnaDarNRT2s). The candidate genes were divided into three groups (Group I-III) based on phylogenetic analyses, supported by a conserved intron-exon structure in each group. Collinearity analysis revealed that the large expansion of BnaZSNRT2s attributed to allopolyploidization of ancestors Brassica rapa and Brassica oleracea, and small-scale duplication events in B. napus. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of BnaZSNRT2s are regulated by multiple factors, and the regulatory pattern is relatively conserved in each group and is tightly connected between groups. Expression assay showed the diverse and differentiated spatial-temporal expression profiles of BnaZSNRT2s in Group I, but conserved patterns were observed in Group II/III; and the low nitrogen (LN) stress up-regulated expression profiles were presented in Group I-III, based on RNA-seq data. RT-qPCR analyses confirmed that BnaZSNRT2.5A-1 and BnaZSNRT2.5C-1 in Group II were highly up-regulated under LN stress in B. napus roots. Our results offer valid information and candidates for further functional BnaZSNRT2s studies.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Família Multigênica , Transportadores de Nitrato , Nitrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Fungi (Basel) ; 9(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36675881

RESUMO

Fusarium graminearum (F. graminearum) is the main pathogen of Fusarium head blight (FHB) in wheat, barley, and corn. Deoxynivalenol (DON), produced by F. graminearum, is the most prevalent toxin associated with FHB. The wheat defense compound putrescine can promote DON production during F. graminearum infection. However, the underlying mechanisms of putrescine-induced DON synthesis are not well-studied. To investigate the effect of putrescine on the global transcriptional regulation of F. graminearum, we treated F. graminearum with putrescine and performed RNA deep sequencing. We found that putrescine can largely affect the transcriptome of F. graminearum. Gene ontology (GO) and KEGG enrichment analysis revealed that having a large amount of DEGs was associated with ribosome biogenesis, carboxylic acid metabolism, glycolysis/gluconeogenesis, and amino acid metabolism pathways. Co-expression analysis showed that 327 genes had similar expression patterns to FgTRI genes and were assigned to the same module. In addition, three transcription factor genes were identified as hub genes in this module, indicating that they may play important roles in DON synthesis. These results provide important clues for further analysis of the molecular mechanisms of putrescine-induced DON synthesis and will facilitate the study of the pathogenic mechanisms of FHB.

12.
Environ Sci Pollut Res Int ; 28(31): 42387-42400, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813703

RESUMO

Colored dissolved organic matter (DOM) is a significant indicator of refractory DOM in wastewaters, and fluorescent DOM is an essential part indicating colorants. However, little is known about the composition and contribution of colored DOM to wastewater. This study provided some insights on the persistent yellowish color in biological effluent through use of a multi-characterization approach, and evaluated the effect of two advanced treatments (O3 and granular active carbon (GAC)) in a full-scale wastewater treatment plant. The multi-characterization technique incorporated resin fractionation, excitation-emission matrix spectroscopy (EEM) combined with fluorescence regional integration (FRI), size-exclusion chromatography (SEC), and X-ray photoelectron spectroscopy (XPS) analysis. The fractionation results showed that hydrophobic acid (HPOA) and hydrophilic (HPI) substances are abundant in colorants, and HPI-type colorants are comparatively resistant or unable to be removed through GAC and O3 individually. FRI-based EEMs showed that F3 (fulvic acid-like organics) and F5 (humic acid-like organics) mainly account for the yellowish color, and their combined fractions of total colorants are 50%, 31%, and 48% in biological, biological + O3, and biological + GAC effluents, respectively. SEC for measurement of the apparent molecular weight revealed that these colorants may have molecular weights in the range 2-5 kDa. The XPS analysis indicated that these colorants possess ether or hydroxyl and nitro (C-O/C-N) chromophoric groups with conjugated aromatic structures. For C-O/C-N, O3 showed good removal efficiency overall. GAC showed exceptionally high efficiency for HPOA but very low efficacy toward HPI-type colorants in terms of C-O/C-N chromophoric functional group removal.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Substâncias Húmicas/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
13.
BMC Genomics ; 21(1): 871, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287703

RESUMO

BACKGROUND: NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. RESULTS: A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone-/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2-1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. CONCLUSION: We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2-1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322211

RESUMO

The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I-III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.


Assuntos
Brassica napus/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Deficiência de Potássio/genética , Potássio/metabolismo , Brassica napus/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Íntrons , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , RNA-Seq , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Biomolecules ; 10(6)2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517318

RESUMO

MYB proteins are involved in diverse important biological processes in plants. Herein, we obtained the MYB superfamily from the allotetraploid Brassica napus, which contains 227 MYB-related (BnMYBR/Bn1R-MYB), 429 R2R3-MYB (Bn2R-MYB), 22 R1R2R3-MYB (Bn3R-MYB), and two R1R2R2R1/2-MYB (Bn4R-MYB) genes. Phylogenetic analysis classified the Bn2R-MYBs into 43 subfamilies, and the BnMYBRs into five subfamilies. Sequence characteristics and exon/intron structures within each subfamily of the Bn2R-MYBs and BnMYBRs were highly conserved. The whole superfamily was unevenly distributed on 19 chromosomes and underwent unbalanced expansion in B. napus. Allopolyploidy between B. oleracea and B. rapa mainly contributed to the expansion in their descendent B. napus, in which B. rapa-derived genes were more retained. Comparative phylogenetic analysis of 2R-MYB proteins from nine Brassicaceae and seven non-Brassicaceae species identified five Brassicaceae-specific subfamilies and five subfamilies that are lacking from the examined Brassicaceae species, which provided an example for the adaptive evolution of the 2R-MYB gene family alongside angiosperm diversification. Ectopic expression of four Bn2R-MYBs under the control of the viral CaMV35S and/or native promoters could rescue the lesser root hair phenotype of the Arabidopsis thaliana wer mutant plants, proving the conserved negative roles of the 2R-MYBs of the S15 subfamily in root hair development. RNA-sequencing data revealed that the Bn2R-MYBs and BnMYBRs had diverse transcript profiles in roots in response to the treatments with various hormones. Our findings provide valuable information for further functional characterizations of B. napusMYB genes.


Assuntos
Brassica napus/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brassica napus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
16.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143436

RESUMO

Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.


Assuntos
Brassica napus/genética , Proteínas de Transporte de Fosfato/genética , Fósforo/química , Proteínas de Plantas/genética , Sítios de Ligação , Transporte Biológico , Mapeamento Cromossômico , Cromossomos de Plantas , Biologia Computacional , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Filogenia , Raízes de Plantas/metabolismo , Ligação Proteica , Fatores de Transcrição/genética
17.
BMC Plant Biol ; 20(1): 115, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171243

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. RESULTS: We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA3, gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. CONCLUSION: The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.


Assuntos
Brassica napus/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Brassica napus/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340456

RESUMO

The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants' development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.


Assuntos
Proteínas de Arabidopsis/genética , Embriófitas/genética , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Filogenia , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Sequência Conservada , Embriófitas/classificação , Embriófitas/metabolismo , Éxons , Redes Reguladoras de Genes , Íntrons , Magnoliopsida/classificação , Magnoliopsida/metabolismo , Família Multigênica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
19.
Planta ; 250(4): 1051-1072, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31161396

RESUMO

MAIN CONCLUSION: Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica , Fatores de Transcrição/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo
20.
PLoS One ; 14(4): e0214885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958842

RESUMO

Auxin response factor (ARF) is a member of the plant-specific B3 DNA binding superfamily. Here, we report the results of a comprehensive analysis of ARF genes in allotetraploid Brassica napus (2n = 38, AACC). Sixty-seven ARF genes were identified in B. napus (BnARFs) and divided into four subfamilies (I-IV). Sixty-one BnARFs were distributed on all chromosomes except C02; the remaining were on Ann and Cnn. The full length of the BnARF proteins was highly conserved especially within each subfamily with all members sharing the N-terminal DNA binding domain (DBD) and the middle region (MR), and most contained the C-terminal dimerization domain (PBI). Twenty-one members had a glutamine-rich MR that may be an activator and the remaining were repressors. Accordingly, the intron patterns are highly conserved in each subfamily or clade, especially in DBD and PBI domains. Several members in subfamily III are potential targets for miR167. Many putative cis-elements involved in phytohormones, light signaling responses, and biotic and abiotic stress were identified in BnARF promoters, implying their possible roles. Most ARF proteins are likely to interact with auxin/indole-3-acetic acid (Aux/IAA) -related proteins, and members from different subfamilies generally shared many common interaction proteins. Whole genome-wide duplication (WGD) by hybridization between Brassica rapa and Brassica oleracea and segmental duplication led to gene expansion. Gene loss following WGD is biased with the An-subgenome retaining more ancestral genes than the Cn-subgenome. BnARFs have wide expression profiles across vegetative and reproductive organs during different developmental stages. No obvious expression bias was observed between An- and Cn-subgenomes. Most synteny-pair genes had similar expression patterns, indicating their functional redundancy. BnARFs were sensitive to exogenous IAA and 6-BA treatments especially subfamily III. The present study provides insights into the distribution, phylogeny, and evolution of ARF gene family.


Assuntos
Brassica napus/genética , Sequência de Aminoácidos , Brassica/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Íntrons , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA