Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 145, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750539

RESUMO

BACKGROUND: Plasma cell-free DNA (cfDNA) fragmentomics has demonstrated significant differentiation power between cancer patients and healthy individuals, but little is known in pancreatic and biliary tract cancers. The aim of this study is to characterize the cfDNA fragmentomics in biliopancreatic cancers and develop an accurate method for cancer detection. METHODS: One hundred forty-seven patients with biliopancreatic cancers and 71 non-cancer volunteers were enrolled, including 55 patients with cholangiocarcinoma, 30 with gallbladder cancer, and 62 with pancreatic cancer. Low-coverage whole-genome sequencing (median coverage: 2.9 ×) was performed on plasma cfDNA. Three cfDNA fragmentomic features, including fragment size, end motif and nucleosome footprint, were subjected to construct a stacked machine learning model for cancer detection. Integration of carbohydrate antigen 19-9 (CA19-9) was explored to improve model performance. RESULTS: The stacked model presented robust performance for cancer detection (area under curve (AUC) of 0.978 in the training cohort, and AUC of 0.941 in the validation cohort), and remained consistent even when using extremely low-coverage sequencing depth of 0.5 × (AUC: 0.905). Besides, our method could also help differentiate biliopancreatic cancer subtypes. By integrating the stacked model and CA19-9 to generate the final detection model, a high accuracy in distinguishing biliopancreatic cancers from non-cancer samples with an AUC of 0.995 was achieved. CONCLUSIONS: Our model demonstrated ultrasensitivity of plasma cfDNA fragementomics in detecting biliopancreatic cancers, fulfilling the unmet accuracy of widely-used serum biomarker CA19-9, and provided an affordable way for accurate noninvasive biliopancreatic cancer screening in clinical practice.


Assuntos
Neoplasias do Sistema Biliar , Ácidos Nucleicos Livres , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Neoplasias do Sistema Biliar/genética , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Adulto
2.
Free Radic Res ; : 1-12, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788124

RESUMO

BACKGROUND: Preeclampsia (PE) is a complex pregnancy disorder characterized by hypertension and organ dysfunction, affecting both maternal and fetal health. Oxidative stress has been implicated in the pathogenesis of PE, but the underlying molecular mechanisms remain poorly understood. In this study, we aimed to identify a diagnostic signature and molecular subtypes associated with oxidative stress in PE to gain novel insights into its pathogenesis. METHODS: The ssGSEA algorithm evaluated oxidative stress-related pathway scores using transcriptional data from the GSE75010 dataset. Oxidative stress-related genes (ORGs) were collected from these pathways, and hub ORGs associated with PE were identified using the LASSO and logistic regression models. A nomogram prediction model was constructed using the identified ORGs. Consensus clustering identified two molecular subgroups related to oxidative stress, labeled as C1 and C2, with unique immune characteristics and inflammatory pathway profiles. RESULTS: Seventy ORGs associated with oxidative stress, cell death, and inflammation-related pathways were identified in PE. EGFR, RIPK3, and ALAD were confirmed as core ORGs for PE biomarkers. The C1 and C2 subgroups exhibited distinct immune characteristics and inflammatory pathway profiles. CONCLUSIONS: This study provides novel insights into the role of oxidative stress in PE pathogenesis. A diagnostic signature and molecular subtypes associated with oxidative stress were identified, which may improve understanding, diagnosis, and management of PE.

3.
Chemosphere ; 352: 141336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309599

RESUMO

In the pursuit of a safe, low-cost, and sustainable method for the reuse of landfill-mined-soil-like-fractions (LFMSFs), pot experiments were conducted using seven growth substrates consisting of LFMSFs, tea residue, and peat for the cultivation of Photinia × fraseri. Six of the substrates had 40 %:60 %, 60 %:40 %, and 80 %:20 % volume ratios of LFMSFs to tea residue or peat, and one substrate consisted entirely of LFMSFs. The physicochemical properties of the substrate, growth parameters of the plants, and heavy metal content in the different pots were determined after one year of growth. The results indicated that the physicochemical properties of the substrate, that was composed of a mixture of LFMSFs and tea residue showed a significant improvement in organic matter, nitrogen, phosphorus, and potassium. However, there was also an increase in the salt and heavy metal contents when compared with those of peat. The plant growth in the LFMSF and tea residue substrate was slightly lower than that in the LFMSF and peat mixture. Notably, the best plant growth and environmentally friendly effects were observed when LFMSFs were added at 40 %. Additionally, most of the heavy metals were primarily removed from the substrate through the leaves of the seedlings, with the heavy metal contents being relatively low. In conclusion, LFMSFs as a cultivation substrate, represent a practical approach for reutilization, which could contribute to the reduction of reliance on traditional resources.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Metais Pesados/análise , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos , Chá
4.
Cell Prolif ; 57(3): e13552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905345

RESUMO

Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.


Assuntos
Adipogenia , Cromatina , Animais , Camundongos , Adipócitos , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular
5.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37832513

RESUMO

Ovarian follicle development is a complex and well-orchestrated biological process of great economic significance for poultry production. Specifically, understanding the molecular mechanisms underlying follicular development is essential for high-efficiency follicular development can benefit the entire industry. In addition, domestic egg-laying hens often spontaneously develop ovarian cancer, providing an opportunity to study the genetic, biochemical, and environmental risk factors associated with the development of this cancer. Here, we provide high-quality RNA sequencing data for chicken follicular granulosa cells across 10 developmental stages, which resulted in a total of 204.57 Gb of clean sequencing data (6.82 Gb on average per sample). We also performed gene expression, time-series, and functional enrichment analyses across the 10 developmental stages. Our study revealed that SWF (small while follicle), F1 (F1 hierarchical follicles), and POFs (postovulatory follicles) best represent the transcriptional changes associated with the prehierarchical, preovulatory, and postovulatory stages, respectively. We found that the preovulatory stage F1 showed the greatest divergence in gene expression from the POF stage. Our research lays a foundation for further elucidation of egg-laying performance of chicken and human ovarian disease.


Assuntos
Galinhas , Folículo Ovariano , Feminino , Animais , Humanos , Galinhas/genética , Folículo Ovariano/metabolismo , Células da Granulosa/química , Células da Granulosa/metabolismo , Sequência de Bases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Adv Mater ; 35(52): e2305260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37754067

RESUMO

Spin-polarized lasers, arising from stimulated emission of imbalanced spin populations, play a vital role in spin-optoelectronics. It is usually tackled by external spin injection, inevitably suffering from additional losses across the barriers from injection sources to gain materials. Herein, spin-polarized coherent light emission is self-triggered from the 1D-anchoring-3D perovskites, where the imbalanced populations in achiral 3D perovskites are endowed with the spin selectivity of exciton chirality (EC) underpinned by chiral 1D perovskites. Efficient transfer of EC is enabled by rapid energy transfer, thereby creating an imbalance of the spin population of excited states. Stimulated emission of such populations brings self-triggered spin-polarized amplified spontaneous emission in the composite perovskites, yielding a higher degree of polarization (DOP) than that based on optical spin injection into bare achiral 3D perovskites. Chemical diversity of composite perovskites not only enables to adjust band gap for broadband output of spin-polarized light signals but also promises to manipulate radiative decay and spin relaxation toward remarkably increased DOP. These results highlight the importance of EC transfer mechanism for spin-polarized lasing and represent a crucial step toward the development of chiral-spintronics.

7.
Int J Surg ; 109(11): 3476-3489, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578452

RESUMO

OBJECTIVE: To construct a novel tumor-node-morphology (TNMor) staging system derived from natural language processing (NLP) of pathology reports to predict outcomes of pancreatic ductal adenocarcinoma. METHOD: This retrospective study with 1657 participants was based on a large referral center and The Cancer Genome Atlas Program (TCGA) dataset. In the training cohort, NLP was used to extract and screen prognostic predictors from pathology reports to develop the TNMor system, which was further evaluated with the tumor-node-metastasis (TNM) system in the internal and external validation cohort, respectively. Main outcomes were evaluated by the log-rank test of Kaplan-Meier curves, the concordance index (C-index), and the area under the receiver operating curve (AUC). RESULTS: The precision, recall, and F1 scores of the NLP model were 88.83, 89.89, and 89.21%, respectively. In Kaplan-Meier analysis, survival differences between stages in the TNMor system were more significant than that in the TNM system. In addition, our system provided an improved C-index (internal validation, 0.58 vs. 0.54, P <0.001; external validation, 0.64 vs. 0.63, P <0.001), and higher AUCs for 1, 2, and 3-year survival (internal validation: 0.62 vs. 0.54, P <0.001; 0.64 vs. 0.60, P= 0.017; 0.69 vs. 0.62, P= 0.001; external validation: 0.69 vs. 0.65, P= 0.098; 0.68 vs. 0.64, P= 0.154; 0.64 vs. 0.55, P= 0.032, respectively). Finally, our system was particularly beneficial for precise stratification of patients receiving adjuvant therapy, with an improved C-index (0.61 vs. 0.57, P <0.001), and higher AUCs for 1-year, 2-year, and 3-year survival (0.64 vs. 0.57, P <0.001; 0.64 vs. 0.58, P <0.001; 0.67 vs. 0.61, P <0.001; respectively) compared with the TNM system. CONCLUSION: These findings suggest that the TNMor system performed better than the TNM system in predicting pancreatic ductal adenocarcinoma prognosis. It is a promising system to screen risk-adjusted strategies for precision medicine.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Estudos Retrospectivos , Estadiamento de Neoplasias , Processamento de Linguagem Natural , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas
8.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430505

RESUMO

Deep-learning-based polarization 3D imaging techniques, which train networks in a data-driven manner, are capable of estimating a target's surface normal distribution under passive lighting conditions. However, existing methods have limitations in restoring target texture details and accurately estimating surface normals. Information loss can occur in the fine-textured areas of the target during the reconstruction process, which can result in inaccurate normal estimation and reduce the overall reconstruction accuracy. The proposed method enables extraction of more comprehensive information, mitigates the loss of texture information during object reconstruction, enhances the accuracy of surface normal estimation, and facilitates more comprehensive and precise reconstruction of objects. The proposed networks optimize the polarization representation input by utilizing the Stokes-vector-based parameter, in addition to separated specular and diffuse reflection components. This approach reduces the impact of background noise, extracts more relevant polarization features of the target, and provides more accurate cues for restoration of surface normals. Experiments are performed using both the DeepSfP dataset and newly collected data. The results show that the proposed model can provide more accurate surface normal estimates. Compared to the UNet architecture-based method, the mean angular error is reduced by 19%, calculation time is reduced by 62%, and the model size is reduced by 11%.

9.
Bull Environ Contam Toxicol ; 110(5): 96, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188746

RESUMO

Microplastics (MPs) have become an important global issue in recent years. However, MPs in the soil have received far less attention than water. Effective and nondestructive extraction of MPs is important for studying MPs in agricultural soils. This study uses different floatation solutions as experiments and uses MgCl2 as the floatation solution of the density extraction method. Five types of standard MPs (PE, PP, PS, PVC, and PET) are used as the objects of this experiment. The recovery of the two particle sizes was between 90.82% and 109.69%. The extracted standard MPs were then subjected to IR and Raman spectroscopic analysis, and the results showed that Raman spectroscopy was more suitable for the identification of the extracted MPs. Finally, this method collected and verified a vast number of soil samples and further analyzed the abundance and characteristics of the collected MPs.


Assuntos
Microplásticos , Solo , Microplásticos/análise , Plásticos/análise , Cloreto de Sódio , China
10.
J Biol Chem ; 299(6): 104757, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116707

RESUMO

Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.


Assuntos
Tecido Adiposo , Cromatina , Genoma , Animais , Humanos , Cromatina/genética , Montagem e Desmontagem da Cromatina , Genômica , Homeostase , Mamíferos , Tecido Adiposo/metabolismo
11.
Front Immunol ; 14: 1091098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891293

RESUMO

Recent reports indicate that immune cells in solid cancers have significant predictive and therapeutic value. IgG4 is a subclass of IgG and we recently found that it exerted an inhibitory effect in tumor immunity. We aimed to assess the significance of IgG4 and T cell subtypes in tumor prognosis. We investigated the density, distribution and relationship of five immune markers CD4, CD8, Foxp3, IL-10 and IgG4 with multiple immunostaining method in 118 esophageal squamous cell carcinoma (ESCC) together with clinical data. The relationship among different immune cell types and with clinical data were analyzed with Kaplan-Meier survival analysis and Cox proportional hazards model to identify independent risk factors among immune and clinicopathological parameters. Five-year survival rate of these patients treated with surgery reached 61%. Higher number of CD4+ plus CD8+ T cells predicted better prognosis (p=0.01) in tertiary lymphoid structure (TLS) and could add to the value of TNM staging. Density of the newly identified immune inhibitor IgG4+ B lymphocytes was found positively correlated to that of CD4+ cells (p=0.02) and IL-10+ cells (p=0.0005), but number of infiltrating IgG4+ cells by itself was not an independent factor for prognosis. However, increased serum concentration of IgG4 indicated a poor prognosis of ESCC (p=0.03). 5-year survival rate of esophageal cancer after surgery has been significantly improved. Increased T cells in TLS predicted better survival, suggesting that T cells in TLS may actively participate in anti-tumor immunity. Serum IgG4 could be a useful predictor of prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Interleucina-10 , Carcinoma de Células Escamosas/patologia , Linfócitos T CD8-Positivos
12.
J Environ Manage ; 337: 117549, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36934502

RESUMO

Fertilization has become one of the most important ways to recycle perishable waste. In order to reveal the effect of the nutrient of the perishable waste primary products on the market and the possible impact of their application, 136 perishable waste primary products were sampled in nine cities in Zhejiang province, China. The result shows that these products have high nutrient content (average nutrient content was 5.00%). However, the conductivity (7.19 mS/cm) total soluble salt content (12.07%), and grease content (5.99%) were too high. The excessive salt and grease may cause harm to soil and crops, and become the main limiting factors for the fertilizer utilization of perishable waste. Heavy metal content of most of the samples met current commercial organic fertilizer standards, except that lead and chromium content of some samples exceeded the limit standard. Toluene, ethylbenzene, m & p-xylene were generally detected in the samples. These toxic and harmful substances have brought risks to the safe use of perishable waste into fertilizers.


Assuntos
Metais Pesados , Resíduos , Fertilizantes/análise , Solo/química , Medição de Risco , Produtos Agrícolas , Metais Pesados/análise
13.
Redox Biol ; 60: 102608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681047

RESUMO

BACKGROUND: We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS: Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS: We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION: Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.


Assuntos
Imunoglobulina G , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Evasão da Resposta Imune , Imunoterapia , Dissulfetos , Microambiente Tumoral
14.
J Biol Chem ; 298(8): 102149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787372

RESUMO

Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.


Assuntos
Diferenciação Celular , Cromatina , Elementos Facilitadores Genéticos , Desenvolvimento Muscular , Mioblastos , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Código das Histonas , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas , Mioblastos/citologia
15.
Chem Commun (Camb) ; 57(100): 13678-13691, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34870655

RESUMO

In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.

16.
ACS Cent Sci ; 7(6): 1056-1065, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235266

RESUMO

Carbon-based materials-such as graphene nanoribbons, fullerenes, and carbon nanotubes-elicit significant excitement due to their wide-ranging properties and many possible applications. However, the lack of methods for precise synthesis, functionalization, and assembly of complex carbon materials has hindered efforts to define structure-property relationships and develop new carbon materials with unique properties. To overcome this challenge, we employed a combination of bottom-up organic synthesis and controlled polymer synthesis. We designed norbornene-functionalized cycloparaphenylenes (CPPs), a family of macrocycles that map onto armchair carbon nanotubes of varying diameters. Through ring-opening metathesis polymerization, we accessed homopolymers as well as block and statistical copolymers constructed from "carbon nanohoops" with a high degree of structural control. These soluble, sp2-carbon-dense polymers exhibit tunable fluorescence emission and supramolecular responses based on composition and sequence. This work represents an important advance toward bridging the gap between small molecules and functional carbon-based materials.

17.
Int Immunopharmacol ; 89(Pt B): 107066, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059199

RESUMO

Spontaneous abortion (SA) is a common pregnancy failure, but the cause of numerous cases remains unexplained. Decidual immune cells (DICs)-mediated cytokine microenvironment is involved in pregnancy and regulated by many microRNAs, but whether microRNA-146a-5p (miR-146a) regulate the decidual cytokine microenvironment and the potential mechanisms in unexplained SA pathogenesis have rarely been reported. In this study, the levels of cytokines and miR-146a in healthy and unexplained SA deciduae were first investigated, and the correlation between them was analyzed. Then, the effect of miR-146a inhibitor on cytokines was assessed in healthy deciduae-derived DICs. Third, the downstream targets and related molecular mechanisms of miR-146a were analyzed by bioinformatics, and the levels of the predicted targets in deciduae were assessed, followed by the correlation analysis between the levels of miR-146a and the targets. Finally, the effect of miR-146a on the predicted targets and inflammatory cytokines was validated in unexplained SA deciduae-derived DICs. As a result, decreased miR-146a correlated with the cytokine disorder in unexplained SA deciduae, and inhibition of miR-146a promoted pro-inflammatory response in healthy deciduae-derived DICs. One hundred four target genes and related molecular mechanisms of miR-146a were predicted, among which the toll-like receptor (TLR) pathway might be associated with the decidual cytokine regulation. Upregulation of miR-146a inhibited the expression of the predicted molecules enriched in the TLR pathway and improved the cytokine disorder in unexplained SA deciduae-derived DICs. Collectively, miR-146a improves the decidual cytokine microenvironment by regulating the TLR pathway in unexplained SA, providing novel potential targets for further therapeutic research.


Assuntos
Aborto Espontâneo/metabolismo , Citocinas/metabolismo , Decídua/metabolismo , Mediadores da Inflamação/metabolismo , MicroRNAs/metabolismo , Receptores Toll-Like/metabolismo , Aborto Espontâneo/genética , Aborto Espontâneo/imunologia , Adulto , Estudos de Casos e Controles , Células Cultivadas , Microambiente Celular , Citocinas/genética , Decídua/imunologia , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Gravidez , Mapas de Interação de Proteínas , Transdução de Sinais , Receptores Toll-Like/genética
18.
Nat Commun ; 11(1): 4633, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934231

RESUMO

Two-photon excited near-infrared fluorescence materials have garnered considerable attention because of their superior optical penetration, higher spatial resolution, and lower optical scattering compared with other optical materials. Herein, a convenient and efficient supramolecular approach is used to synthesize a two-photon excited near-infrared emissive co-crystalline material. A naphthalenediimide-based triangular macrocycle and coronene form selectively two co-crystals. The triangle-shaped co-crystal emits deep-red fluorescence, while the quadrangle-shaped co-crystal displays deep-red and near-infrared emission centered on 668 nm, which represents a 162 nm red-shift compared with its precursors. Benefiting from intermolecular charge transfer interactions, the two co-crystals possess higher calculated two-photon absorption cross-sections than those of their individual constituents. Their two-photon absorption bands reach into the NIR-II region of the electromagnetic spectrum. The quadrangle-shaped co-crystal constitutes a unique material that exhibits two-photon absorption and near-infrared emission simultaneously. This co-crystallization strategy holds considerable promise for the future design and synthesis of more advanced optical materials.

19.
Front Genet ; 11: 845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849828

RESUMO

Local hypoxia has recently been reported to occur in the white adipose tissue (WAT) microenvironment during obesity. Adipocytes have a unique life cycle that reflects the different stages of adipogenesis in the WAT niche. Long non-coding RNAs (lncRNAs) play an important role in the cellular response to hypoxia. However, the differentially hypoxic responses of preadipocytes during adipogenesis and the potential role of lncRNAs in this process remain to be elucidated. Here, we evaluated the differentially hypoxic responses of primary hamster preadipocytes during adipogenesis and analyzed mRNA and lncRNA expression in same Ribo-Zero RNA-seq libraries. Hypoxia induced HIF-1α protein during adipogenesis and caused divergent changes of cell phenotypes. A total of 10,318 mRNAs were identified to be expressed in twenty libraries (five timepoints), and 3,198 differentially expressed mRNAs (DE mRNAs) were detected at five timepoints (hypoxia vs. normoxia). Functional enrichment analysis revealed the shared and specific hypoxia response pathways in the different stages of adipogenesis. Hypoxia differentially modulated the expression profile of adipose-associated genes, including adipokines, lipogenesis, lipolysis, hyperplasia, hypertrophy, inflammatory, and extracellular matrix. We also identified 4,296 lncRNAs that were expressed substantially and detected 1,431 DE lncRNAs at five timepoints. Two, 3, 5, 13, and 50 DE mRNAs at D0, D1, D3, D7, and D11, respectively, were highly correlated and locus-nearby DE lncRNAs and mainly involved in the cell cycle, vesicle-mediated transport, and mitochondrion organization. We identified 28 one-to-one lncRNA-mRNA pairs that might be closely related to adipocyte functions, such as ENSCGRT00015041780-Hilpda, TU2105-Cdsn, and TU17588-Ltbp3. These lncRNAs may represent the crucial regulation axis in the cellular response to hypoxia during adipogenesis. This study dissected the effects of hypoxia in the cell during adipogenesis, uncovered novel regulators potentially associated with WAT function, and may provide a new viewpoint for interpretation and treatment of obesity.

20.
Science ; 368(6488): 297-303, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299950

RESUMO

A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m2 g-1 and a volumetric BET area of 2060 m2 cm-3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g-1) with an uptake of 0.66 g g-1 [262 cm3 (standard temperature and pressure, STP) cm-3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g-1 [238 cm3 (STP) cm-3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter-1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA