Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1442193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161590

RESUMO

The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.

2.
J Transl Med ; 22(1): 724, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103885

RESUMO

BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.


Assuntos
Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Camundongos
3.
Front Pharmacol ; 15: 1378140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101135

RESUMO

Background: Within-day glycemic variability (GV), characterized by frequent and significant fluctuations in blood glucose levels, is a growing concern in hospitalized patients with type 2 diabetes mellitus (T2DM). It is associated with an increased risk of hypoglycemia and potentially higher long-term mortality rates. Robust clinical evidence is needed to determine whether traditional Chinese medicine (TCM) decoctions can be a beneficial addition to the management of within-day GV in this patient population. Methods: This retrospective cohort study utilized data from adult inpatients diagnosed with T2DM admitted to the Traditional Chinese Medicine Hospital of Kaifeng. The primary outcome investigated was the association between the use of TCM decoctions and improved stability of within-day GV. Blood glucose variability was assessed using the standard deviation of blood glucose values (SDBG). For each patient, the total number of hospitalization days with SDBG below 2 mmol/L was calculated to represent within-day GV stability. Hospitalization duration served as the secondary outcome, compared between patients receiving TCM decoctions and those who did not. The primary analysis employed a multivariable logistic regression model, with propensity score matching to account for potential confounding variables. Results: A total of 1,360 patients were included in the final analysis. The use of TCM decoctions was significantly associated with enhanced stability of within-day GV (OR = 1.77, 95% CI: 1.34-2.33, P < 0.01). This association was most prominent in patients with a diagnosis of deficiency syndrome (predominantly qi-yin deficiency, accounting for 74.8% of cases) and a disease duration of less than 5 years (OR = 2.28, 95% CI: 1.21-4.29, P = 0.03). However, TCM decoctions did not exert a statistically significant effect on hospitalization duration among patients with T2DM (OR = 0.96, 95% CI: 0.91-1.01, P = 0.22). Conclusion: This study suggests that TCM decoctions may be effective in improving within-day GV stability in hospitalized patients with T2DM. This effect appears to be most pronounced in patients diagnosed with deficiency syndrome, particularly those with qi-yin deficiency and a shorter disease course. Further investigation is warranted to confirm these findings and elucidate the underlying mechanisms.

4.
J Chem Inf Model ; 64(13): 5253-5261, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973303

RESUMO

Psychoactive substances, including morphine and methamphetamine, have been shown to interact with the classic innate immune receptor Toll-like receptor 4 (TLR4) and its partner protein myeloid differentiation protein 2 (MD2) in a nonenantioselective manner. (-)-Nicotine, the primary alkaloid in tobacco and a key component of highly addictive cigarettes, targets the TLR4/MD2, influencing TLR4 signaling pathways. Existing as two enantiomers, the stereoselective recognition of nicotine by TLR4/MD2 in the context of the innate immune response remains unclear. In this study, we synthesized (+)-nicotine and investigated its effects alongside (-)-nicotine on lipopolysaccharide (LPS)-induced TLR4 signaling. (-)-Nicotine dose-dependently inhibited proinflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and cyclooxygenase-2 (COX-2). In contrast, (+)-nicotine showed no such inhibitory effects. Molecular dynamics simulations revealed that (-)-nicotine exhibited a stronger affinity with the TLR4 coreceptor MD2 than (+)-nicotine. Additionally, in silico simulations revealed that both nicotine enantiomers initially attach to the entrance of the MD2 cavity, creating a metastable state before they fully enter the cavity. In the metastable state, (-)-nicotine established more stable interactions with the surrounding residues at the entrance of the MD2 cavity compared to those of (+)-nicotine. This highlights the crucial role of the MD2 cavity entrance in the chiral recognition of nicotine. These findings provide valuable insights into the distinct interactions between nicotine enantiomers and the TLR4 coreceptor MD2, underscoring the enantioselective effect of nicotine on modulating TLR4 signaling.


Assuntos
Antígeno 96 de Linfócito , Simulação de Dinâmica Molecular , Nicotina , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Nicotina/farmacologia , Nicotina/química , Nicotina/análogos & derivados , Nicotina/metabolismo , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/química , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Humanos , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química
5.
Chemosphere ; 363: 142955, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069100

RESUMO

As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.


Assuntos
Acidithiobacillus , Antimônio , Ferro , Minerais , Mineração , Oxirredução , Espécies Reativas de Oxigênio , Sulfetos , Antimônio/metabolismo , Antimônio/química , Acidithiobacillus/metabolismo , Ferro/metabolismo , Ferro/química , Sulfetos/metabolismo , Sulfetos/química , Minerais/metabolismo , Minerais/química , Espécies Reativas de Oxigênio/metabolismo , Adsorção , Peróxido de Hidrogênio/metabolismo
6.
Environ Sci Technol ; 58(27): 11988-11997, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875444

RESUMO

Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.


Assuntos
Rios , Rios/química , Oceanos e Mares , Monitoramento Ambiental , Espectrometria de Massas , Compostos Orgânicos/análise
7.
STAR Protoc ; 5(2): 103104, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861383

RESUMO

Approaches for detecting micro(nano)plastics (MNPs) released from intravenous infusion products (IVIPs) are vital for evaluating the safety of both IVIPs and their derived MNPs on human health, yet current understanding is limited. Here, we present a protocol for detecting polyvinyl chloride (PVC) MNPs by combining Raman spectroscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We describe steps for collecting, pretreating, and measuring PVC MNPs released from IVIPs. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Infusões Intravenosas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cloreto de Polivinila/química , Humanos , Microscopia Eletrônica de Varredura/métodos , Espectrometria por Raios X/métodos , Plásticos/química
8.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875158

RESUMO

Cold stress declines the quality and yield of tea, yet the molecular basis underlying cold tolerance of tea plants (Camellia sinensis) remains largely unknown. Here, we identified a circadian rhythm component LUX ARRHYTHMO (LUX) that potentially regulates cold tolerance of tea plants through a genome-wide association study and transcriptomic analysis. The expression of CsLUX phased with sunrise and sunset and was strongly induced by cold stress. Genetic assays indicated that CsLUX is a positive regulator of freezing tolerance in tea plants. CsLUX was directly activated by CsCBF1 and repressed the expression level of CsLOX2, which regulates the cold tolerance of tea plants through dynamically modulating jasmonic acid content. Furthermore, we showed that the CsLUX-CsJAZ1 complex attenuated the physical interaction of CsJAZ1 with CsICE1, liberating CsICE1 with transcriptional activities to withstand cold stress. Notably, a single-nucleotide variation of C-to-A in the coding region of CsLUX was functionally validated as the potential elite haplotype for cold response, which provided valuable molecular markers for future cold resistance breeding in tea plants.

9.
J Hazard Mater ; 476: 134818, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901252

RESUMO

With increasing concerns about N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone (6PPD-Q), relevant environmental investigations and toxicological research have sprung up in recent years. However, limited information could be found for human body burden assessment. This work collected and analyzed 200 samples consisting of paired urine and plasma samples from participants (50 male and 50 female) in Tianjin, China. Low detection frequencies (DF, <15 %) were found except for urinary 6PPD-Q (86 %), which suggested the poor residue tendency of 6PPD and 6PPD-Q in blood. The low DFs also lead to no substantial association between two chemicals. Data analysis based on urinary 6PPD-Q showed a significant difference between males and females (p < 0.05). No significant correlation was found for other demographic factors (Body Mass Index (BMI), age, drinking, and smoking). The mean values of daily excretion (ng/kg bw/day) calculated using urinary 6PPD-Q for females and males were 7.381 ng/kg bw/day (female) and 3.360 ng/kg bw/day (male), and apparently female suffered higher daily exposure. Further analysis with daily excretion and ALT (alanine aminotransferase)/TSH (thyroid stimulating hormone)/ blood cell analysis indicators found a potential correlation with 6PPD-Q daily excretion and liver/immune functions. Considering this preliminary assessment, systematic research targeting the potential organs at relevant concentrations is required.


Assuntos
Fenilenodiaminas , Humanos , Masculino , Feminino , China , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Poluentes Ambientais/urina , Poluentes Ambientais/sangue , Quinonas
10.
Int J Biol Macromol ; 275(Pt 1): 133430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936567

RESUMO

Phenolic resins occupy an important position in industrial applications, but phenol, one of the raw materials for synthesis, is a non-renewable resource. Lignin, as a natural polymer containing phenolic hydroxyl groups, alcohol hydroxyl groups and other reactive groups, can replace some of the phenol in the synthesis of phenolic resins, which can reduce the amount of phenol, thus reducing the cost of phenolic resins, while effectively promoting the high value-added use of renewable biomass resources. Due to its low reactivity, alkaline lignin is usually discharged as production waste, unaware that lignin macromolecules can be modified. In this paper, the phenolic monomers were obtained by acid-catalyzed depolymerization of DES (choline chloride/p-toluenesulfonic acid or choline chloride/lactic acid) from waste alkaline lignin, and the recovery rate of the DES solution during the catalytic treatment was more than 85 %, in which the main monomer was 2-methoxy-4-(1-propyl) phenol. The degradation of alkaline lignin is still favorable after five times of DES solvent recovery. The depolymerized lignin monomer replaced phenol by 50 wt% and then ternary co-polymerized with phenol and formaldehyde to form a biomass phenol-based phenolic resin, providing a green route for phenolic resin production. The cost of resin preparation was economically calculated, and it was found that the cost of resin after accumulating 4 cycles of DES treatment was only 51.1 % of that of pure phenolic resin. The density functional theory (DFT) was used to simulate the possible radical reactions in the intermediate process of phenolic resin reaction, to explore the microscopic mechanism and competition, to provide theoretical reference for further experimental realization of resin structure control and optimization, and to improve the theoretical system of resin synthesis.


Assuntos
Lignina , Fenóis , Polimerização , Lignina/química , Fenóis/química , Catálise , Fenol/química , Biomassa , Resinas Sintéticas/química
11.
Plant Physiol Biochem ; 213: 108803, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885564

RESUMO

Soybean research has gained immense attention due to its extensive use in food, feedstock, and various industrial applications, such as the production of lubricants and engine oils. In oil crops, the process of seed development and storage substances accumulation is intricate and regulated by multiple transcription factors (TFs). In this study, FUSCA3 (GmFUS3) was characterized for its roles in plant development, lipid metabolism, and stress regulation. Expressing GmFUS3 in atfus3 plants restored normal characteristics observed in wild-type plants, including cotyledon morphology, seed shape, leaf structure, and flower development. Additionally, its expression led to a significant increase of 25% triacylglycerols (TAG) and 33% in protein levels. Transcriptomic analysis further supported the involvement of GmFUS3 in various phases of plant development, lipid biosynthesis, lipid trafficking, and flavonoid biosynthesis. To assess the impact of stress on GmFUS3 expression, soybean plants were subjected to different stress conditions, and the its expression was assessed. Transcriptomic data revealed significant alterations in the expression levels of approximately 80 genes linked to reactive oxygen species (ROS) signaling and 40 genes associated with both abiotic and biotic stresses. Additionally, GmFUS3 was found to regulate abscisic acid synthesis and interact with nucleoside diphosphate kinase 1, which is responsible for plant cellular processes, development, and stress response. Overall, this research sheds light on the multifaceted functions of GmFUS3 and its potential applications in enhancing crop productivity and stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Estresse Fisiológico , Glycine max/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas/metabolismo , Metabolismo dos Lipídeos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Redes e Vias Metabólicas
12.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692424

RESUMO

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Assuntos
Carbono , Estuários , Inundações , Rios , China , Rios/química , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
13.
Materials (Basel) ; 17(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38730945

RESUMO

Environmental pollution and energy crises have garnered global attention. The substantial discharge of organic waste into water bodies has led to profound environmental contamination. Photocatalytic fuel cells (PFCs) enabling the simultaneous removal of refractory contaminants and recovery of the chemical energy contained in organic pollutants provides a potential strategy to solve environmental issues and the energy crisis. This review will discuss the fundamentals, working principle, and configuration development of PFCs and photocatalytic microbial fuel cells (PMFCs). We particularly focus on the strategies for improving the wastewater treatment performance of PFCs/PMFCs in terms of coupled advanced oxidation processes, the rational design of high-efficiency electrodes, and the strengthening of the mass transfer process. The significant potential of PFCs/PMFCs in various fields is further discussed in detail. This review is intended to provide some guidance for the better implementation and widespread adoption of PFC wastewater treatment technologies.

14.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732273

RESUMO

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Assuntos
Secas , Melatonina , Raízes de Plantas , Salinidade , Plântula , Sementes , Triticum , Melatonina/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Água/metabolismo
15.
ACS Appl Mater Interfaces ; 16(15): 19112-19120, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579811

RESUMO

Two-dimensional transition metal dichalcogenide (TMDC) heterostructure is receiving considerable attention due to its novel electronic, optoelectronic, and spintronic devices with design-oriented and functional features. However, direct design and synthesis of high-quality TMDC/MnTe heterostructures remain difficult, which severely impede further investigations of semiconductor/magnetic semiconductor devices. Herein, the synthesis of high-quality vertically stacked WS2/MnTe heterostructures is realized via a two-step chemical vapor deposition method. Raman, photoluminescence, and scanning transmission electron microscopy characterizations reveal the high-quality and atomically sharp interfaces of the WS2/MnTe heterostructure. WS2/MnTe-based van der Waals field effect transistors demonstrate high rectification behavior with rectification ratio up to 106, as well as a typical p-n electrical transport characteristic. Notably, the fabricated WS2/MnTe photodetector exhibits sensitive and broadband photoresponse ranging from UV to NIR with a maximum responsivity of 1.2 × 103 A/W, a high external quantum efficiency of 2.7 × 105%, and fast photoresponse time of ∼50 ms. Moreover, WS2/MnTe heterostructure photodetectors possess a broadband image sensing capability at room temperature, suggesting potential applications in next-generation high-performance and broadband image sensing photodetectors.

16.
Open Life Sci ; 19(1): 20220778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585641

RESUMO

Bovine respiratory disease (BRD) is a significant veterinary challenge, often exacerbated by pathogen resistance, hindering effective treatment. Traditional testing methods for primary pathogens - Mycoplasma bovis, Pasteurella multocida, and Mannheimia haemolytica - are notably time-consuming and lack the rapidity required for effective clinical decision-making. This study introduces a TaqMan MGB probe detection chip, utilizing fluorescent quantitative PCR, targeting key BRD pathogens and associated drug-resistant genes and sites. We developed 94 specific probes and primers, embedded into a detection chip, demonstrating notable specificity, repeatability, and sensitivity, reducing testing time to under 1 h. Additionally, we formulated probes to detect mutations in the quinolone resistance-determining region, associated with fluoroquinolone resistance in BRD pathogens. The chip exhibited robust sensitivity and specificity, enabling rapid detection of drug-resistant mutations in clinical samples. This methodology significantly expedites the diagnostic process for BRD and sensitive drug screening, presenting a practical advancement in the field.

17.
Front Immunol ; 15: 1379853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650937

RESUMO

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.


Assuntos
Fenótipo , Animais , Camundongos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Proliferação de Células , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Apoptose , Fagocitose , Movimento Celular/imunologia
18.
Adv Mater ; 36(26): e2312887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606800

RESUMO

Low-barrier and high-injection electrodes are crucial for high-performance (HP) 2D semiconductor devices. Conventional trial-and-error methodologies for electrode material screening are impractical because of their low efficiency and arbitrary specificity. Although machine learning has emerged as a promising alternative to tackle this problem, its practical application in semiconductor devices is hindered by its substantial data requirements. In this paper, a comprehensive scheme combining an autoencoding regularized adversarial neural network and a feature-adaptive variational active learning algorithm for screening low-contact electrode materials for 2D semiconductor transistors with limited data is proposed. The proposed scheme exhibits exceptional performance by training with only 15% of the total data points, where the mean square errors are 0.17 and 0.27 eV for the vertical and lateral Schottky barrier, respectively, and 2.88% for tunneling probability. Further, it exhibits an optimal predictive performance for 100 randomly sampled training datasets, reveals the underlying physical insight based on the identified features, and realizes continual improvement by employing detailed density-of-states descriptors. Finally, the empirical evaluations of the transport characteristics are conducted and verified by constructing MOSFET devices. These findings demonstrate the considerable potential of machine-learning techniques for screening high-efficiency electrode materials and constructing HP 2D semiconductor devices.

19.
Clin Neurol Neurosurg ; 241: 108285, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636361

RESUMO

BACKGROUND: Stroke-induced heart syndrome is a feared complication of ischemic stroke, that is commonly encountered and has a strong association with unfavorable prognosis. More research is needed to explore underlying mechanisms and inform clinical decision making. This study aims to explore the relationship between the early systemic immune-inflammation (SII) index and the cardiac complications after acute ischemic stroke. METHODS: Consecutive patients with acute ischemic stroke were prospectively collected from January 2020 to August 2022 and retrospectively analyzed. We included subjects who presented within 24 hours after symptom onset and were free of detectable infections or cancer on admission. SII index [(neutrophils × platelets/ lymphocytes)/1000] was calculated from laboratory data at admission. RESULTS: A total of 121 patients were included in our study, of which 24 (19.8 %) developed cardiac complications within 14 days following acute ischemic stroke. The SII level was found higher in patients with stroke-heart syndrome (p<.001), which was an independent predictor of stroke-heart syndrome (adjusted odds ratio 5.089, p=.002). CONCLUSION: New-onset cardiovascular complications diagnosed following a stroke are very common and are associated with early SII index.


Assuntos
Inflamação , AVC Isquêmico , Humanos , Masculino , Feminino , AVC Isquêmico/imunologia , AVC Isquêmico/complicações , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Inflamação/imunologia , Cardiopatias/etiologia , Cardiopatias/imunologia , Cardiopatias/complicações , Idoso de 80 Anos ou mais , Isquemia Encefálica/imunologia , Isquemia Encefálica/complicações , Isquemia Encefálica/etiologia
20.
Noncoding RNA Res ; 9(3): 945-953, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38680418

RESUMO

Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA