Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS One ; 19(5): e0303171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768113

RESUMO

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interferon gama/genética , Interferon gama/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Perfilação da Expressão Gênica/métodos
2.
Sci Rep ; 14(1): 9032, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641704

RESUMO

CSF1R is a receptor tyrosine kinase responsible for the growth/survival/polarization of macrophages and overexpressed in some AML patients. We hypothesized that a novel multi-kinase inhibitor (TKi), narazaciclib (HX301/ON123300), with high potency against CSF1R (IC50 ~ 0.285 nM), would have anti-AML effects. We tested this by confirming HX301's high potency against CSF1R (IC50 ~ 0.285 nM), as well as other kinases, e.g. FLT3 (IC50 of ~ 19.77 nM) and CDK6 (0.53 nM). An in vitro proliferation assay showed that narazaciclib has a high growth inhibitory effect in cell cultures where CSF1R or mutant FLT3-ITD variants that may be proliferation drivers, including primary macrophages (IC50 of 72.5 nM) and a subset of AML lines (IC50 < 1.5 µM). In vivo pharmacology modeling of narazaciclib using five AML xenografts resulted in: inhibition of MV4-11 (FLT3-ITD) subcutaneous tumor growth and complete suppression of AM7577-PDX (FLT3-ITD/CSF1Rmed) systemic growth, likely due to the suppression of FLT3-ITD activity; complete suppression of AM8096-PDX (CSF1Rhi/wild-type FLT3) growth, likely due to the inhibition of CSF1R ("a putative driver"); and nonresponse of both AM5512-PDX and AM7407-PDX (wild-type FLT3/CSF1Rlo). Significant leukemia load reductions in bone marrow, where disease originated, were also achieved in both responders (AM7577/AM8096), implicating that HX301 might be a potentially more effective therapy than those only affecting peripheral leukemic cells. Altogether, narazaciclib can potentially be a candidate treatment for a subset of AML with CSF1Rhi and/or mutant FLT3-ITD variants, particularly second generation FLT3 inhibitor resistant variants.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias/antagonistas & inibidores , Receptores de Fator Estimulador de Colônias/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia
3.
Sci Rep ; 13(1): 5419, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012357

RESUMO

Both PD1/PD-L1 and CD47 blockades have demonstrated limited activity in most subtypes of NHL save NK/T-cell lymphoma. The hemotoxicity with anti-CD47 agents in the clinic has been speculated to account for their limitations. Herein we describe a first-in-class and rationally designed bispecific antibody (BsAb), HX009, targeting PD1 and CD47 but with weakened CD47 binding, which selectively hones the BsAb for tumor microenvironment through PD1 interaction, potentially reducing toxicity. In vitro characterization confirmed: (1) Both receptor binding/ligand blockade, with lowered CD47 affinity; (2) functional PD1/CD47 blockades by reporter assays; (3) T-cell activation in Staphylococcal-enterotoxin-B-pretreated PBMC and mixed-lymphocyte-reaction. In vivo modeling demonstrated antitumor activity in Raji-B and Karpass-229-T xenograft lymphomas. In the humanized mouse syngeneic A20 B-lymphoma (huCD47-A20) HuGEMM model, which has quadruple knocked-in hPD1xhPD-L1xhCD47xhSIRPα genes and an intact autologous immune-system, a contribution of effect is demonstrated for each targeted biologic (HX008 targeting PD1 and SIRPα-Fc targeting CD47), which is clearly augmented by the dual targeting with HX009. Lastly, the expression of the immune-checkpoints PD-L1/L2 and CD47 seemed co-regulated among a panel of lymphoma-derived-xenografts, where HX009 maybe more effective in those with upregulated CD47. Our data warrants HX009's further clinical development for treating NHLs.


Assuntos
Anticorpos Biespecíficos , Linfoma não Hodgkin , Neoplasias , Camundongos , Animais , Humanos , Antígeno B7-H1 , Leucócitos Mononucleares/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Antígeno CD47 , Neoplasias/metabolismo , Microambiente Tumoral
4.
PLoS One ; 18(1): e0279821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602988

RESUMO

Patient-derived tumor xenograft (PDX)/organoid (PDO), driven by cancer stem cells (CSC), are considered the most predictive models for translational oncology. Large PDX collections reflective of patient populations have been created and used extensively to test various investigational therapies, including population-trials as surrogate subjects in vivo. PDOs are recognized as in vitro surrogates for patients amenable for high-throughput screening (HTS). We have built a biobank of carcinoma PDX-derived organoids (PDXOs) by converting an existing PDX library and confirmed high degree of similarities between PDXOs and parental PDXs in genomics, histopathology and pharmacology, suggesting "biological equivalence or interchangeability" between the two. Here we demonstrate the applications of PDXO biobank for HTS "matrix" screening for both lead compounds and indications, immune cell co-cultures for immune-therapies and engineering enables in vitro/in vivo imaging. This large biobank of >550 matched pairs of PDXs/PDXOs across different cancers could become powerful tools for the future cancer drug discovery.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Bancos de Espécimes Biológicos , Xenoenxertos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Organoides , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 13(1): 2154, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443752

RESUMO

Metastatic non-small cell lung cancer (NSCLC) remains largely incurable and the prognosis is extremely poor once it spreads to the brain. In particular, in patients with brain metastases, the blood brain barrier (BBB) remains a significant obstacle for the biodistribution of antitumor drugs and immune cells. Here we report that chimeric antigen receptor (CAR) T cells targeting B7-H3 (B7-H3.CAR) exhibit antitumor activity in vitro against tumor cell lines and lung cancer organoids, and in vivo in xenotransplant models of orthotopic and metastatic NSCLC. The co-expression of the CCL2 receptor CCR2b in B7-H3.CAR-T cells, significantly improves their capability of passing the BBB, providing enhanced antitumor activity against brain tumor lesions. These findings indicate that leveraging T-cell chemotaxis through CCR2b co-expression represents a strategy to improve the efficacy of adoptive T-cell therapies in patients with solid tumors presenting with brain metastases.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos T , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 12(1): 3278, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228603

RESUMO

Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.


Assuntos
Antineoplásicos , Imunoterapia , Animais , Antineoplásicos/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral
7.
Hepatology ; 76(6): 1634-1648, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349735

RESUMO

BACKGROUND AND AIMS: Although many studies revealed transcriptomic subtypes of HCC, concordance of the subtypes are not fully examined. We aim to examine a consensus of transcriptomic subtypes and correlate them with clinical outcomes. APPROACH AND RESULTS: By integrating 16 previously established genomic signatures for HCC subtypes, we identified five clinically and molecularly distinct consensus subtypes. STM (STeM) is characterized by high stem cell features, vascular invasion, and poor prognosis. CIN (Chromosomal INstability) has moderate stem cell features, but high genomic instability and low immune activity. IMH (IMmune High) is characterized by high immune activity. BCM (Beta-Catenin with high Male predominance) is characterized by prominent ß-catenin activation, low miRNA expression, hypomethylation, and high sensitivity to sorafenib. DLP (Differentiated and Low Proliferation) is differentiated with high hepatocyte nuclear factor 4A activity. We also developed and validated a robust predictor of consensus subtype with 100 genes and demonstrated that five subtypes were well conserved in patient-derived xenograft models and cell lines. By analyzing serum proteomic data from the same patients, we further identified potential serum biomarkers that can stratify patients into subtypes. CONCLUSIONS: Five HCC subtypes are correlated with genomic phenotypes and clinical outcomes and highly conserved in preclinical models, providing a framework for selecting the most appropriate models for preclinical studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/patologia , beta Catenina/genética , Neoplasias Hepáticas/patologia , Consenso , Proteômica , Genômica , Fenótipo
8.
Cancer Res Commun ; 2(5): 353-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36875715

RESUMO

Tumor biology is determined not only by immortal cancer cells but also by the tumor microenvironment consisting of noncancerous cells and extracellular matrix, together they dictate the pathogenesis and response to treatments. Tumor purity is the proportion of cancer cells in a tumor. It is a fundamental property of cancer and is associated with many clinical features and outcomes. Here we report the first systematic study of tumor purity in patient-derived xenograft (PDX) and syngeneic tumor models using next-generation sequencing data from >9,000 tumors. We found that tumor purity in PDX models is cancer specific and mimics patient tumors, with variation in stromal content and immune infiltration influenced by immune systems of host mice. After the initial engraftment, human stroma in a PDX tumor is quickly replaced by mouse stroma, and tumor purity then stays stable in subsequent transplantations and increases only slightly by passage. Similarly, in syngeneic mouse cancer cell line models, tumor purity also turns out to be an intrinsic property with model and cancer specificities. Computational and pathology analysis confirmed the impact on tumor purity by the diverse stromal and immune profiles. Our study deepens the understanding of mouse tumor models, which will enable their better and novel uses in developing cancer therapeutics, especially ones targeting tumor microenvironment. Significance: PDX models are an ideal experimental system to study tumor purity because of its distinct separation of human tumor cells and mouse stromal and immune cells. This study provides a comprehensive view of tumor purity in 27 cancers in PDX models. It also investigates tumor purity in 19 syngeneic models based on unambiguously identified somatic mutations. It will facilitate tumor microenvironment research and drug development in mouse tumor models.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/genética , Sistema Imunitário , Microambiente Tumoral
9.
Curr Opin Pharmacol ; 61: 49-61, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619442

RESUMO

Chimeric antigen receptor (CAR) T cells have largely been successful in treating hematological malignancies in the clinic but have not been as effective in treating solid tumors, in part, owing to poor access and the immunosuppressive tumor microenvironment. In addition, CAR-T therapy can cause potentially life-threatening side effects, including cytokine release syndrome and neurotoxicity. Current preclinical testing of CAR-T therapy efficacy is typically performed in mouse tumor models, which often fails to predict toxicity. Recent developments in humanized models and transgenic mice as well as in vitro three-dimensional organoids in early development and nonhuman primate models are being adopted for CAR-T cell efficacy and toxicity assessment. However, because no single model perfectly recapitulates the human immune system and tumor microenvironment, careful model selection based on their respective pros and cons is crucial for adequate evaluation of different CAR-T treatments, so that their clinical development can be better supported.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Imunoterapia Adotiva , Camundongos , Neoplasias/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Microambiente Tumoral
10.
J Vis Exp ; (171)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028430

RESUMO

Patient-derived tumor xenografts (PDXs) are considered the most predictive preclinical models, largely believed to be driven by cancer stem cells (CSC) for conventional cancer drug evaluation. A large library of PDXs is reflective of the diversity of patient populations and thus enables population based preclinical trials ("Phase II-like mouse clinical trials"); however, PDX have practical limitations of low throughput, high costs and long duration. Tumor organoids, also being patient-derived CSC-driven models, can be considered as the in vitro equivalent of PDX, overcoming certain PDX limitations for dealing with large libraries of organoids or compounds. This study describes a method to create PDX-derived organoids (PDXO), thus resulting in paired models for in vitro and in vivo pharmacology research. Subcutaneously-transplanted PDX-CR2110 tumors were collected from tumor-bearing mice when the tumors reached 200-800 mm3, per an approved autopsy procedure, followed by removal of the adjacent non-tumor tissues and dissociation into small tumor fragments. The small tumor fragments were washed and passed through a 100 µm cell strainer to remove the debris. Cell clusters were collected and suspended in basement membrane extract (BME) solution and plated in a 6-well plate as a solid droplet with surrounding liquid media for growth in a CO2 incubator. Organoid growth was monitored twice weekly under light microscopy and recorded by photography, followed by liquid medium change 2 or 3 times a week. The grown organoids were further passaged (7 days later) at a 1:2 ratio by disrupting the BME embedded organoids using mechanical shearing, aided by addition of trypsin and the addition of 10 µM Y-27632. Organoids were cryopreserved in cryo-tubes for long-term storage, after release from BME by centrifugation, and also sampled (e.g., DNA, RNA and FFPE block) for further characterization.


Assuntos
Antineoplásicos , Neoplasias , Organoides , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Farmacologia
11.
J Vis Exp ; (170)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33999032

RESUMO

Patient-derived organoid (PDO) models allow for long-term expansion and maintenance of primary epithelial cells grown in three dimensions and a near-native state. When derived from resected or biopsied tumor tissue, organoids closely recapitulate in vivo tumor morphology and can be used to study therapy response in vitro. Biobanks of tumor organoids reflect the vast variety of clinical tumors and patients and therefore hold great promise for preclinical and clinical applications. This paper presents a method for medium-throughput drug screening using head and neck squamous cell carcinoma and colorectal adenocarcinoma organoids. This approach can easily be adopted for use with any tissue-derived organoid model, both normal and diseased. Methods are described for in vitro exposure of organoids to chemo- and radiotherapy (either as single-treatment modality or in combination). Cell survival after 5 days of drug exposure is assessed by measuring adenosine triphosphate (ATP) levels. Drug sensitivity is measured by the half-maximal inhibitory concentration (IC50), area under the curve (AUC), and growth rate (GR) metrics. These parameters can provide insight into whether an organoid culture is deemed sensitive or resistant to a particular treatment.


Assuntos
Adenocarcinoma , Antineoplásicos/farmacologia , Neoplasias Colorretais , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias de Cabeça e Pescoço , Organoides/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Técnicas de Cultura de Órgãos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
13.
NAR Genom Bioinform ; 2(3): lqaa060, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575611

RESUMO

Misidentification and contamination of biobank samples (e.g. cell lines) have plagued biomedical research. Short tandem repeat (STR) and single-nucleotide polymorphism assays are widely used to authenticate biosamples and detect contamination, but with insufficient sensitivity at 5-10% and 3-5%, respectively. Here, we describe a deep NGS-based method with significantly higher sensitivity (≤1%). It can be used to authenticate human and mouse cell lines, xenografts and organoids. It can also reliably identify and quantify contamination of human cell line samples, contaminated with only small amount of other cell samples; detect and quantify species-specific components in human-mouse mixed samples (e.g. xenografts) with 0.1% sensitivity; detect mycoplasma contamination; and infer population structure and gender of human samples. By adopting DNA barcoding technology, we are able to profile 100-200 samples in a single run at per-sample cost comparable to conventional STR assays, providing a truly high-throughput and low-cost assay for building and maintaining high-quality biobanks.

14.
BMC Cancer ; 19(1): 718, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331301

RESUMO

BACKGROUND: Mouse clinical trials (MCTs) are becoming wildly used in pre-clinical oncology drug development, but a statistical framework is yet to be developed. In this study, we establish such as framework and provide general guidelines on the design, analysis and application of MCTs. METHODS: We systematically analyzed tumor growth data from a large collection of PDX, CDX and syngeneic mouse tumor models to evaluate multiple efficacy end points, and to introduce statistical methods for modeling MCTs. RESULTS: We established empirical quantitative relationships between mouse number and measurement accuracy for categorical and continuous efficacy endpoints, and showed that more mice are needed to achieve given accuracy for syngeneic models than for PDXs and CDXs. There is considerable disagreement between methods on calling drug responses as objective response. We then introduced linear mixed models (LMMs) to describe MCTs as clustered longitudinal studies, which explicitly model growth and drug response heterogeneities across mouse models and among mice within a mouse model. Case studies were used to demonstrate the advantages of LMMs in discovering biomarkers and exploring drug's mechanisms of action. We introduced additive frailty models to perform survival analysis on MCTs, which more accurately estimate hazard ratios by modeling the clustered mouse population. We performed computational simulations for LMMs and frailty models to generate statistical power curves, and showed that power is close for designs with similar total number of mice. Finally, we showed that MCTs can explain discrepant results in clinical trials. CONCLUSIONS: Methods proposed in this study can make the design and analysis of MCTs more rational, flexible and powerful, make MCTs a better tool in oncology research and drug development.


Assuntos
Ensaios Clínicos como Assunto/métodos , Desenvolvimento de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Animais , Biomarcadores Tumorais , Biópsia , Linhagem Celular Tumoral , Simulação por Computador , Modelos Animais de Doenças , Humanos , Isoenxertos , Modelos Lineares , Oncologia , Camundongos , Neoplasias/patologia , Intervalo Livre de Progressão , Projetos de Pesquisa , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Methods Mol Biol ; 1953: 183-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912023

RESUMO

Experimental animal tumor models have been broadly used to evaluate anticancer drugs in the preclinical setting. They have also been widely applied for drug target discovery and validation, which usually follows four experimental strategies: first, assess the roles of putative drug targets using in vivo tumorigenicity and tumor growth kinetics assays of transplanted tumors, engineered through gain-of-function (GOF) by overexpressing transgene or knock-in (KI) or loss-of-function by gene silencing using knockdown (KD) or knockout (KO) or mutation via mutagenesis procedures; second, similarly genetically engineered mouse models (GEMM), through either germline or somatic cell procedures, are used to test the roles of potential targets in spontaneous tumorigenicity assays; third, patient-derived xenografts (PDXs), which most closely resemble patient genetics and histopathology, are used in tumor inhibition assays for evaluating target-/pathway-specific inhibitors, including large and small molecules, thus assessing the drug target; and fourth, the targets can be assessed in population-based trials, mouse clinical trials (MCT), so that the validation can be generally meaningful as performed in human clinical trials. This chapter outlines the commonly used protocols in cancer drug target research: the first four sections describe four sets of different, specific pharmacology protocols used in the respective cancer modeling stages, with the last section summarizing the common protocols applicable to all four pharmacology modeling steps.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Marcação de Genes/métodos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transgenes , Carga Tumoral/efeitos dos fármacos
16.
Zhongguo Zhong Yao Za Zhi ; 42(12): 2361-2365, 2017 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-28822194

RESUMO

Oridonin, which is an ent-kaurene diterpenoid isolated from traditional Chinese medicine Rabdosia rubescens, displays various bioactivities, including anti-inflammation, anti-bacteria and anti-tumor. This study aimed to investigate the effect of oridonin on apoptosis of triple-negative breast cancer MDA-MB-231 cells and its underlying mechanisms. The inhibitory effect of oridonin on proliferation of MDA-MB-231 cells was measured by MTT assay; Apoptosis was analyzed by flow cytometry with PI staining and Annexin V-FITC/PI staining; Intracellular reactive oxygen species (ROS) level was determined by ROS detection kit, and expressions of PARP, Bcl-2, caspase-3 were analyzed by Western blot. The results showed that oridonin exhibited a significant effect in inducing apoptosis of MDA-MB-231 cells, enhancing intracellular ROS level, down-regulating expression of Bcl-2 protein, and promoting cleavage of caspase-3 and its substrate PARP. These results indicated that the apoptosis-inducing effect of oridonin on MDA-MB-231 cells might be correlated with increase of intracellular ROS level, down-regulation of Bcl-2 protein and activation of caspase-3.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias de Mama Triplo Negativas
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(5): 588-593, 2017 05 20.
Artigo em Chinês | MEDLINE | ID: mdl-28539279

RESUMO

OBJECTIVE: To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). METHODS: The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. RESULTS: 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. CONCLUSION: MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Transportadores de Ácidos Monocarboxílicos/metabolismo , Piruvatos/farmacologia , Simportadores/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos
18.
Pharmacol Ther ; 173: 34-46, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28167217

RESUMO

Immuno-oncology (I/O) research has intensified significantly in recent years due to the breakthrough development and the regulatory approval of several immune checkpoint inhibitors, leading to the rapid expansion of the new discovery of novel I/O therapies, new checkpoint inhibitors and beyond. However, many I/O questions remain unanswered, including why only certain subsets of patients respond to these treatments, who the responders would be, and how to expand patient response (the conversion of non-responders or maximizing response in partial responders). All of these require relevant I/O experimental systems, particularly relevant preclinical animal models. Compared to other oncology drug discovery, e.g. cytotoxic and targeted drugs, a lack of relevant animal models is a major obstacle in I/O drug discovery, and an urgent and unmet need. Despite the obvious importance, and the fact that much I/O research has been performed using many different animal models, there are few comprehensive and introductory reviews on this topic. This article attempts to review the efforts in development of a variety of such models, as well as their applications and limitations for readers new to the field, particularly those in the pharmaceutical industry.


Assuntos
Modelos Animais de Doenças , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/patologia
19.
Exp Hematol ; 45: 36-44.e2, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27670587

RESUMO

Engrafting the bone marrow cells of a patient with M5 acute myeloid leukemia into immunocompromised mice (AM7577) resulted in serially transferrable stable AML and eventual mortality. The disease starts in the bone marrow and then expands to peripheral areas, which is typical of M5 leukemogenesis, where high leukemic burden in blood is coincident with symptoms/mortality. The leukemic cells in the mice had myeloid morphology, phenotypes, and genotypes (including the internal tandem duplication of FMS-like tyrosine kinase receptor 3 gene [FLT3-ITD]) similar to those of the original patient. Autocrine mechanisms of human granulocyte-macrophage colony-stimulating factor/interleukin-3 likely support AM7577 growth in mice. Treatment with FLT3 TKI (AC220) caused complete remission in peripheral blood, spleen, and bone, along with relief of symptoms and extended life, hinting that FLT3-ITD may be a key leukemogenic driver maintaining the disease. Interestingly, withdrawal of AC220 (high dose) did not result in relapse of disease, suggesting cure. These results, however, are in contrast to cytarabine (AraC) induction treatment: First, although AraC significantly suppresses the diseases in blood, and to a lesser degree in bone marrow and spleen, the suppression is temporary and does not prevent eventual onset of disease/death. Second, the withdrawal of AraC always resulted in rapid relapse in peripheral blood and eventually death. Our observation in this patient-derived model may provide useful information for clinical applications of the two drugs.


Assuntos
Benzotiazóis/farmacologia , Citarabina/farmacologia , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Compostos de Fenilureia/farmacologia , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética , Idoso , Animais , Antimetabólitos Antineoplásicos/farmacologia , Benzotiazóis/uso terapêutico , Citarabina/uso terapêutico , Análise Mutacional de DNA , Modelos Animais de Doenças , Genótipo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 7(31): 50575-50581, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27409671

RESUMO

Cetuximab is an approved treatment for metastatic colorectal carcinoma (mCRC) with codon 12/13-KRAS mutations, recently questioned for its validity, and alternative mutation-based biomarkers were proposed. We set out to investigate whether an expression signature can also predict response by utilizing a cetuximab mouse clinical trial (MCT) dataset on a cohort of 25 randomly selected EGFR+ CRC patient-derived xenografts (PDXs). While we found that the expression of EGFR and its ligands are not predictive of the cetuximab response, we tested a published RAS pathway signature, a 147-gene expression signature proposed to describe RAS pathway activity, against this MCT dataset. Interestingly, our study showed that the observed cetuximab activity has a strong correlation with the RAS pathway signature score, which was also demonstrated to have a certain degree of correlation with a historic clinical dataset. Altogether, the independent validations in unrelated datasets from independent cohort of CRCs strongly suggest that RAS pathway signature may be a relevant expression signature predictive of CRC response to cetuximab. Our data seem to suggest that an mRNA expressing signature may also be developed as a predictive biomarker for drug response, similarly to genetic mutations.


Assuntos
Cetuximab/farmacologia , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas ras/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Humanos , Ligantes , Camundongos , Mutação , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA