Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110238, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108720

RESUMO

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, with the highest single-cause mortality. Monocarboxylate transporter 4 (Mct4) transports intracellular lactate outside, but its role in regulating host immune response against Mtb infection remains unknown. Mct4 expression was upregulated in Mtb-infected macrophages and in patients with TB. Mct4 silencing/deficiency significantly decreased Mtb survival in macrophages and in lungs and spleens of mice, while Mct4 overexpression facilitated Mtb survival in macrophages. Furthermore, Mct4 promoted intracellular lactate transport, nuclear factor κB (NF-κB) p65 activation, and interleukin-10 (IL-10) production upon Mtb infection. Mechanistically, IL-10 silencing and IL-10-neutralizing antibody blocked Mct4 overexpressing increased Mtb survival. Replenishing lactate and NF-κB p65 inhibitor JSH23 treatment could inhibit Mct4 overexpressing increased NF-κB p65 activation, IL-10 production, and Mtb survival in macrophages. This study demonstrates that Mct4 promotes Mtb survival through restricting intracellular lactate accumulation to promote NF-κB p65-mediated IL-10 production and suggests Mct4-NF-κB p65-IL-10 axis a potential target for TB treatment.

2.
Sci Rep ; 14(1): 14935, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942938

RESUMO

Tourism carbon offsetting is a crucial pathway to achieving peak carbon and carbon neutrality in the tourism industry. Accurately grasping the collaborative evolutionary mechanisms among local governments, tourism enterprises, and tourists is key to promoting the implementation of tourism carbon offsetting. By constructing an evolutionary game model involving local governments, tourism enterprises, and tourists in carbon offsetting, this study uses MATLAB to simulate the evolutionary stable strategies under various conditions. Additionally, it dynamically simulates the collaborative strategies of the three parties under the influence of local government incentive and constraint mechanisms. The results indicate that under strong governmental constraint mechanisms, there is a promotion of active participation in carbon offsetting by local governments, tourism enterprises, and tourists. Incentive policies at certain levels also play a positive guiding role. As incentives increase, local subsidies and intervention costs also rise, leading to an evolution towards less enthusiastic participation among the three parties. Appropriately balanced government incentives and penalties are beneficial in achieving an equilibrium of benefits among multiple stakeholders involved in carbon offsetting, thus helping to attain carbon neutrality goals.

3.
Inflamm Res ; 73(6): 897-913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625657

RESUMO

OBJECTIVES AND DESIGN: As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS: We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS: Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS: This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.


Assuntos
Fator Regulador 3 de Interferon , Interferon gama , Macrófagos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases , Proteínas , Transdução de Sinais , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Proteínas/genética , Proteínas/metabolismo , Quinase I-kappa B/metabolismo , Janus Quinases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Camundongos Knockout , Tuberculose/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Proteína Viperina
4.
Inflamm Res ; 72(1): 27-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315280

RESUMO

OBJECTIVES AND DESIGN: Dendritic cells (DCs) are one of the key immune cells in bridging innate and adaptive immune response against Mycobacterium tuberculosis (Mtb) infection. Interferons (IFNs) play important roles in regulating DC activation and function. Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin) is one of the important IFN-stimulated genes (ISGs), and elicits host defense against infection. METHODS: We investigated the effects and mechanisms of Viperin on DC activation and function using Viperin deficient bone marrow-derived dendritic cells (BMDCs) during Mtb infection. RESULTS: Viperin deficiency enhanced phagocytic activity and increased clearance of Mtb in DCs, produced higher abundance of NO, cytokine including interleukin-12 (IL-12), Tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and chemokine including CXCL1, CXCL2 and CXCL10, elevated MHC I, MHC II and co-stimulatory molecules expression, and enhanced CD4+ and CD8+ T cell responses. Mechanistically, Viperin deficiency promoted DC activation and function through NF-κB p65 activation. NF-κB p65 inhibitor prevented cytokine and chemokine production, and co-stimulatory molecules expression promoted by Viperin deficiency. CONCLUSIONS: These results suggest that Mtb induced Viperin expression could impair the activation of host defense function of DCs and DC-T cell cross talk during Mtb infection. This research may provide a potential target for future HDT in TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteína Viperina , Quimiocinas/metabolismo , Citocinas , Células Dendríticas , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Proteína Viperina/metabolismo , Animais
5.
Front Immunol ; 12: 752466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095838

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection is the deadliest infectious disease and a global health problem. Macrophages (Mφs) and neutrophils that can phagocytose Mtb represent the first line of immune response to infection. Glycogen synthase kinase-3α/ß (GSK-3α/ß) represents a regulatory switch in host immune responses. However, the efficacy and molecular mechanisms of how GSK-3α/ß interacts with Mtb infection in Mφs remain undefined. Here, we demonstrated that Mtb infection downregulated GSK-3α/ß activity and promoted matrix metalloproteinase-1 (MMP-1) and MMP-9 expressions in Mφs derived from acute monocytic human leukemia THP-1 cells (THP-1-Mφs). We confirmed the upregulation of MMP-9 expression in tissues of TB patients compared with patients of chronic inflammation (CI). In THP-1-Mφs and C57BL/6 mice, GSK-3α/ß inhibitor SB216763 significantly increased MMP-1/9 production and facilitated Mtb load, while MMP inhibitors blocked MMP-1/9 expression and Mtb infection. Consistently, GSK-3α/ß silencing significantly increased MMP-1/9 expression and Mtb infection, while overexpression of GSK-3α/ß and constitutive activated GSK-3α/ß mutants significantly reduced MMP-1/9 expression and Mtb infection in THP-1-Mφs. MMP-1/9 silencing reduced Mtb infection, while overexpression of MMP-1/9 promoted Mtb infection in THP-1-Mφs. We further found that GSK-3α/ß inhibition increased Mtb infection and MMP-1/9 expression was blocked by ERK1/2 inhibitor. Additionally, we showed that protein kinase C-δ (PKC-δ) and mammalian target of rapamycin (mTOR) reduced GSK-3α/ß activity and promoted MMP-1/9 production in Mtb-infected THP-1-Mφs. In conclusion, this study suggests that PKC-δ-mTOR axis suppresses GSK-3α/ß activation with acceleration of MMP-1/9 expression through phospho-ERK1/2. These results reveal a novel immune escape mechanism of Mtb and a novel crosstalk between these critical signaling pathways in anti-TB immunity.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Tuberculose/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais/fisiologia , Células THP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA