RESUMO
Sow fertility is an economically important quantitative trait. Hundreds of quantitative trait loci (QTLs) containing tens of thousands of potential candidate genes are excavated. However, among these genes, non-coding RNAs including long non-coding RNAs (lncRNAs) are often overlooked. Here, it is reported that NORSF is a novel causal lncRNA for sow fertility traits in QTLs. QTLs are characterized for sow fertility traits at the genome-wide level and identified 4,630 potential candidate lncRNAs, with 13 differentially expressed during sow follicular atresia. NORSF, a lncRNA that involved in sow granulosa cell (sGC) function, is identified as a candidate gene for sow fertility traits as a G to A transversion at 128 nt in its transcript is shown to be markedly associated with sow fertility traits. Mechanistically, after forming the RNA:dsDNA triplexes with the promoter of Caspase8, NORSF transcript with allele G binds to an RNA-binding protein (RBP) NR2C1 and recruits it to the promoter of Caspase8, to induce Caspase8 transcription in sGCs. Functionally, this leads to a loss of inducing effect of NORSF on sGC apoptosis by inactivating the death receptor-mediated apoptotic pathway. This study identified a novel causal lncRNA that can be used for the genetic improvement of sow fertility traits.
Assuntos
Apoptose , Fertilidade , Células da Granulosa , Locos de Características Quantitativas , RNA Longo não Codificante , Animais , Feminino , Sítios de Ligação , Células da Granulosa/metabolismo , Mutação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Suínos/genéticaRESUMO
NORSF is a nuclear long noncoding RNA (lncRNA) that contributes to the follicular atresia and restrains 17ß-estradiol (E2) release by granulosa cells (GCs). Importantly, it is also a potential candidate gene in the quantitative trait locus (QTLs) for sow fertility traits. We identified NORSF as a candidate (causal) gene affecting sow fertility traits. A novel G-A variant was discovered at -478 nt of the NORSF promoter and termed as g.-478G>A. Association analysis revealed that this variant was associated with sow fertility traits (e.g., the total number of piglets born, the total number of piglets born alive, and the number of healthy piglets). Mechanistically, the g.-478G>A variant reduced the binding activity of the NORSF promoter to its transcription activator regulatory factor X7 (RFX7), leading to decreased NORSF promoter activity and transcription levels in sow GCs (sGCs), and weakened inhibitory effects on the transcription of CYP19A1, which encodes a rate-limiting enzyme for E2 synthesis and E2 release by sGCs. In addition, RFX7 is transcriptionally activated by P53, which restrains E2 release from sGCs via the RFX7/NORSF/CYP19A1 pathway. These findings indicate that the lncRNA NORSF is a causal gene in QTLs for sow fertility traits and define the P53/NORSF/CYP19A1 pathway as a new signaling pathway affecting sow reproduction, which provides a new target for improving female fertility.
RESUMO
INTRODUCTION: Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of ß-amyloid (Aß). However, little is known about the connection between Nav1.6 and astrocyte-derived Aß. OBJECTIVE: This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aß in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion. METHODS: A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects. RESULTS: Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aß by promoting lysosome- APP fusion, which is related to attenuating reverse Na+-Ca2+ exchange current thus reducing intracellular Ca2+ to facilitate autophagic through AKT/mTOR/ULK pathway. CONCLUSION: Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aß, highlighting its potential as a cell-specific target for modulating AD progression.
RESUMO
BACKGROUND: Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS: Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS: SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-ß-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION: SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.
RESUMO
Selection of optimal reference genes (RGs) is fundamental for functional genomics studies and gene expression analysis, which are two main approaches to identify functional genes and their expression patterns. However, no systematic study has identified the suitable RGs in porcine ovarian granulosa cells (GCs) which are essential for follicle fate and sow fertility. In this study, the expression profiles of 12 widely-used RGs (GAPDH, RPLP0, ACTB, TUBA1B, EIF3K, PPIA, ATP5F1, B2M, HPRT1, UBC, RPS3, and EEF1A1) in porcine GCs during follicular development and under different abiotic stresses were systematically investigated. Expression stability of the candidate RGs were comprehensively accessed by five statistical algorithms including ΔCt, NormFinder, BestKeeper, geNorm, and RefFinder, indicating that RPS3 and PPIA are the optimal RGs during follicular development, EEF1A1 and RPLP0 are most stable under oxidative stress and inflammation, while ATP5F1, B2M, and RPS3 have higher stability under starvation and heat stress. Notably, the most commonly used RGs (ACTB, GAPDH, and TUBA1B) exhibited low stability in GCs. Reliability of stable RGs was verified by RT-qPCR and showed that selection of the stable RGs significantly improved the detection accuracy of qPCR, which confirms once again that the stability of RGs should not be taken for granted. Our findings identified optimal RG sets in porcine GCs under different conditions, which is helpful in future studies to accurately identify the key regulators and their expression patterns during follicular development in sows.
Assuntos
Perfilação da Expressão Gênica , Inflamação , Animais , Suínos/genética , Feminino , Reprodutibilidade dos Testes , Algoritmos , Células da Granulosa , Reação em Cadeia da Polimerase em Tempo Real , Padrões de ReferênciaRESUMO
BACKGROUND: Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS: We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION: These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
RESUMO
BACKGROUND: Functioning as a competing endogenous RNA (ceRNA) is the main action mechanism of most cytoplasmic lncRNAs. However, it is not known whether this mechanism of action also exists in the nucleus. RESULTS: We identified four nuclear lncRNAs that are presented in granulosa cells (GCs) and were differentially expressed during sow follicular atresia. Notably, similar to cytoplasmic lncRNAs, these nuclear lncRNAs also sponge miRNAs in the nucleus of GCs through direct interactions. Furthermore, NORSF (non-coding RNA involved in sow fertility), one of the nuclear lncRNA acts as a ceRNA of miR-339. Thereby, it relieves the regulatory effect of miR-339 on CYP19A1 encoding P450arom, a rate-limiting enzyme for E2 synthesis in GCs. Interestingly, miR-339 acts as a saRNA that activates CYP19A1 transcription and enhances E2 release by GCs through altering histone modifications in the promoter by directly binding to the CYP19A1 promoter. Functionally, NORSF inhibited E2 release by GCs via the miR-339 and CYP19A1 axis. CONCLUSIONS: Our findings highlight an unappreciated mechanism of nuclear lncRNAs and show it acts as a ceRNA, which may be a common lncRNA function in the cytoplasm and nucleus. We also identified a potential endogenous saRNA for improving female fertility and treating female infertility.
Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Suínos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Atresia Folicular/genética , Células da Granulosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Increasing evidence shows that lncRNAs, an important kind of endogenous regulator, are involved in the regulation of follicular development and female fertility, but the mechanism remain largely unknown. In this study, we found that SDNOR, a recently identified antiapoptotic lncRNA, is a potential multifunctional regulator in porcine follicular granulosa cells (GCs) through RNA-seq and multi-dimension analyses. SDNOR-mediated regulatory networks were established and identified that SOX9, a transcription factor inhibited by SDNOR, mediates SDNOR's regulation of the transcription of downstream targets. Functional analyses showed that loss of SDNOR significantly impairs GC morphology, inhibits cell proliferation and viability, reduces E2/P4 index, and suppresses the expression of crucial markers, including PCNA, Ki67, CDK2, CYP11A1, CYP19A1, and StAR. Additionally, after the detection of ROS, SOD, GSH-Px, and MDA, we found that SDNOR elevates the resistance of GCs to oxidative stress (OS) and also inhibits OS-induced apoptosis. Notably, GCs with high SDNOR levels are insensitive to oxidative stress, leading to lower apoptosis rates and higher environmental adaptability. In summary, our findings reveal the regulation of porcine GCs in response to oxidative stress from the perspective of lncRNA and demonstrate that SDNOR is an essential antioxidative lncRNA for maintaining the normal state and function of GCs.
RESUMO
The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.
Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Animais , Camundongos , Astrócitos/metabolismo , Autofagia , Disfunção Cognitiva/etiologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Encefalopatia Associada a Sepse/metabolismo , HumanosRESUMO
MicroRNA-23a (miR-23a) is an endogenous small activating RNA (saRNA) involved in ovarian granulosa cell (GC) apoptosis and sow fertility by activating lncRNA NORHA transcription. Here, we reported that both miR-23a and NORHA were repressed by a common transcription factor MEIS1, which forms a small network regulating sow GC apoptosis. We characterized the pig miR-23a core promoter, and the putative binding sites of 26 common transcription factors were detected in the core promoters of both miR-23a and NORHA. Of them, transcription factor MEIS1 expression was the highest in the ovary, and widely distributed in various ovarian cells, including GCs. Functionally, MEIS1 is involved in follicular atresia by inhibiting GC apoptosis. Luciferase reporter and ChIP assays showed that transcription factor MEIS1 represses the transcription activity of miR-23a and NORHA through direct binding to their core promoters. Furthermore, MEIS1 represses miR-23a and NORHA expression in GCs. Additionally, MEIS1 inhibits the expression of FoxO1, a downstream of the miR-23a/NORHA axis, and GC apoptosis by repressing the miR-23a/NORHA axis. Overall, our findings point to MEIS1 as a common transcription repressor of miR-23a and NORHA, and develop the miR-23a/NORHA axis into a small regulatory network regulating GC apoptosis and female fertility.
Assuntos
Células da Granulosa , MicroRNAs , Proteína Meis1 , Animais , Feminino , Apoptose/genética , Atresia Folicular , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , SuínosRESUMO
Follicular atresia triggered by granulosa cell (GC) apoptosis severely reduces female fertility and accelerates reproductive aging. GC apoptosis is a complex process regulated by multiple factors, regulatory axes, and signaling pathways. Here, we report a novel, small regulatory network involved in GC apoptosis and follicular atresia. miR-187, a miRNA down-regulated during follicular atresia in sows, maintains TGFBR2 mRNA stability in sow GCs by directly binding to its 5'-UTR. miR-187 activates the transforming growth factor-ß (TGF-ß) signaling pathway and suppresses GC apoptosis via TGFBR2 activation. NORHA, a pro-apoptotic lncRNA expressed in sow GCs, inhibits TGFBR2-mediated activation of the TGF-ß signaling pathway by sponging miR-187. In contrast, NORFA, a functional lncRNA associated with sow follicular atresia and GC apoptosis, enhances miR-187 and TGFBR2 expression by inhibiting NORHA and activating NFIX. Our findings define a simple regulatory network that controls GC apoptosis and follicular atresia, providing new insights into the mechanisms of GC apoptosis, follicular atresia, and female fertility.
RESUMO
The transcriptional initiation of genes is inextricably bound with the functions of cis-regulatory sequences. The pig is one of the most important livestock species and an ideal animal model for biomedical studies. At the same time, the liver is a critical organ with diverse and complex metabolic functions. Here, we performed Cleavage Under Targets and Tagmentation (CUT&Tag) coupled with high-throughput sequencing to profile the chromatin landscape of histone H3 lysine 27 acetylation (H3K27ac), histone H3 lysine 4 monomethylation (H3K4me1), and CCAAT enhancer-binding protein ß (C-EBPß) in the 70-d-old porcine liver, compared the different profiles among the three markers and their associated stitched-enhancers by stitching and sorting the peaks within 12.5 kb (Pott and Lieb, 2015) and generated the porcine liver-specific super-enhancers (SEs) by the combination of three markers. Compared to typical enhancers (TEs) and other stitched-enhancers, liver-specific SEs showed a higher density of cis-motifs and SNPs, which may recruit more tissue-specific vital TFs. The expression profiles in fetal and 70-d-old pigs proved that a large proportion of SE-associated genes were up-regulated and were more related to hepatic metabolisms and detoxification pathways. Our results illustrated the difference and connection among promoter and enhancer markers, identified the features of liver SEs and their associated genes, and provided novel insight into cis-element identification, function, and liver transcriptional regulation.
The cis-regulatory elements including promoters, enhancers, and newly identified super-enhancers (SEs), which were reported to function both promoter and enhancer capabilities, play critical roles in selective gene expression during development and disease. To reveal and compare the characteristics of these cis-elements in liver, we first performed a genome-wide profile of H3K27ac, H3K4me1, and C-EBPß, then constructed their associated stitched-enhancers respectively. Porcine liver-specific SEs were generated by overlapping the three stitched-enhancers. The genomic and genic location, TF binding sites and SNP distribution patterns were compared among these cis-elements. We found that stitched-enhancers gather in regions with higher gene densities and locate closer to the transcription starting sites. Additionally, SEs showed higher density of TF binding sites and SNPs. To access the transcriptional consequences of liver SEs, we first analyzed the genes locationally associated with SEs. The KEGG results suggested that these genes are significantly involved in metabolisms, detoxification, and autophagy pathways. We also detected the liver gene expression profiles using RNA-seq and noticed that SE-associated genes are more likely to be up-regulated. Our results provided novel information on the identification, function, and transcriptional regulation of cis-elements in the liver.
Assuntos
Histonas , Lisina , Animais , Suínos/genética , Histonas/metabolismo , Lisina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fígado/metabolismoRESUMO
microRNAs (miRNAs) are well known to be important in mammalian female fertility. However, the genetic regulation of miRNAs associated with female fertility remains largely unknown. Here, we report that two single-nucleotide variants (SNVs) in the miR-23a promoter strongly influence miR-23a transcription and function in granulosa cell (GC) apoptosis. Two novel SNVs, g.-283G>C and g.-271C>T, were detected in the porcine miR-23a promoter by pooled-DNA sequencing. Furthermore, SNVs in the promoter region influenced miR-23a transcription in porcine GCs by altering its promoter activity. Functionally, SNVs in the promoter strongly influenced miR-23a regulation of early apoptosis in porcine GCs cultured in vitro. In addition, a preliminary association analysis showed that the combined genotypes of the two SNVs, rather than a single SNV, were tentatively associated with sow fertility traits in a Large White population. Overall, our findings suggest that the SNVs g.-283G>C and g.-271C>T in the miR-23a promoter are causal variants affecting GC apoptosis and miR-23a may be a potential small-molecule nonhormonal drug for regulating female fertility.
Assuntos
MicroRNAs , Feminino , Animais , Suínos/genética , MicroRNAs/genética , Apoptose/genética , Regiões Promotoras Genéticas , Células da Granulosa , Nucleotídeos , Mamíferos/genéticaRESUMO
OBJECTIVES: Transforming growth factor ß1 (TGF-ß1), an essential cytokine belongs to TGF-ß superfamily, is crucial for female fertility. Increasing evidence show that long noncoding RNAs (lncRNAs) influence the state of granulosa cells (GCs). This study aimed to detect the effects of TGF-ß1 on the lncRNA transcriptome, and investigate whether lncRNAs mediate the functions of TGF-ß1 in GCs. MATERIAL AND METHODS: RNA-seq and bioinformatics analyses were performed to identify and characterize the differentially expressed lncRNAs (DElncRNAs). The regulatory mechanism of TGF-ß1 to lncRNA transcriptome was analyzed by chromatin immunoprecipitation. The effects of lncRNAs on the antiapoptotic and proproliferative functions of TGF-ß1 were examined by morphological analysis, fluorescence-activated cell sorting, Cell Counting Kit-8, and Western blot. RESULTS: A total of 72 DElncRNAs highly sensitive to TGF-ß1 were identified with the criteria of |log2 (fold chage)| ≥ 3 and false discovery rate < 0.05. Functional assessment showed that DElncRNAs were enriched in TGF-ß, nuclear factor kappa B, p53, and Hippo pathways which are crucial for the normal state and function of GCs. Importantly, SMAD4 is essential for the regulation of TGF-ß1 to lncRNA transcriptome. In vitro studies confirmed that TGF-ß1 induced TEX14-IT1 transcription in a SMAD4-dependent manner, and TEX14-IT1 mediated the antiapoptotic and proproliferative effects of TGF-ß1 in GCs. CONCLUSIONS: Our findings demonstrate that TGF-ß1 alters lncRNA transcriptome in a SMAD4-dependent manner, and highlight that lncRNAs mediate the functions of TGF-ß1 in GCs, which contribute to a better understanding of the epigenetic regulation of female fertility.
Assuntos
RNA Longo não Codificante , Fator de Crescimento Transformador beta1 , Feminino , Epigênese Genética , Células da Granulosa , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , SuínosRESUMO
The high level of progesterone and 17ß-estradiol ratio (P4/E2) in follicular fluid has been considered as a biomarker of follicular atresia. CYP11A1, the crucial gene encoding the rate-limiting enzyme for steroid hormone synthesis, has been reported differently expressed in the ovary during follicular atresia. However, the regulation mechanism of CYP11A1 expression during follicular atresia still remains unclear. Here, we have demonstrated that lnc2300, a novel pig ovary-specific highly expressed cis-acting long noncoding RNA (lncRNA) transcribed from chromosome 7, has the ability to induce the expression of CYP11A1 and inhibit the apoptosis of porcine granulosa cells (GCs). Mechanistically, lnc2300, mainly located in the cytoplasm of porcine GCs, sponges and suppresses the expression of miR-365-3p through acting as a competing endogenous RNA (ceRNA), which further relieves the inhibitory effects of miR-365-3p on the expression of CYP11A1. Besides, CYP11A1 is validated as a direct functional target of miR-365-3p in porcine GCs. Functionally, lnc2300 is an antiapoptotic lncRNA that reduces porcine GC apoptosis by inhibiting the proapoptotic function of miR-365-3p. In summary, our findings reveal a cis-acting regulation mechanism of CYP11A1 through lncRNA, and define a novel signaling pathway, lnc2300/miR-365-3p/CYP11A1 axis, which is involved in the regulation of GC apoptosis and follicular atresia.
Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Suínos , Animais , RNA Longo não Codificante/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Atresia Folicular/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Apoptose/genéticaRESUMO
Betaine is a well-established supplement used in livestock feeding. In our previous study, betaine was shown to result in the redistribution of body fat, a healthier steatosis phenotype, and an increased liver weight and triglyceride storage of the Landes goose liver, which is used for foie-gras production. However, these effects are not found in other species and strains, and the underlying mechanism is unclear. Here, we studied the underpinning molecular mechanisms by developing an in vitro fatty liver cell model using primary Landes goose hepatocytes and a high-glucose culture medium. Oil red-O staining, a mitochondrial membrane potential assay, and a qRT-PCR were used to quantify lipid droplet characteristics, mitochondrial ß-oxidation, and fatty acid metabolism-related gene expression, respectively. Our in vitro model successfully simulated steatosis caused by overfeeding. Betaine supplementation resulted in small, well-distributed lipid droplets, consistent with previous experiments in vivo. In addition, mitochondrial membrane potential was restored, and gene expression of fatty acid synthesis genes (e.g., sterol regulatory-element binding protein, diacylglycerol acyltransferase 1 and 2) was lower after betaine supplementation. By contrast, the expression of lipid hydrolysis transfer genes (mitochondrial transfer protein and lipoprotein lipase) was higher. Overall, the results provide a scientific basis and theoretical support for the use of betaine in animal production.
RESUMO
Phenotypes are the result of the interaction between the gene and the environment, so the response of individuals with different genotypes to an environment is variable. Here, we reported that a mutation in miR-23a influences granulosa cells (GCs) response to oxidative stress, a common mechanism of environmental factors affecting female reproduction. We showed that nuclear miR-23a is a pro-apoptotic miRNA in porcine GCs through the activation of the transcription and function of NORHA, a long non-coding RNA (lncRNA) induces GC apoptosis and responses to oxidative stress. Mechanistically, miR-23a acts as an endogenous small activating RNA (saRNA) to alter histone modifications of the NORHA promoter through the direct binding to its core promoter. A C > T mutation was identified at −398 nt of the miR-23a core promoter, which created a novel binding site for the transcription factor SMAD4 and recruited the transcription repressor SMAD4 to inhibit miR-23a transcription and function in GCs. Notably, g.−398C > T mutation in the miR-23a promoter reduced GCs response to oxidative stress. In addition, g.−398C > T mutation was significantly associated with sow fertility traits. In short, our findings preliminarily revealed the genetic basis of individual differences in the response to oxidative stress from the perspective of a single mutation and identified miR-23a as a candidate gene for the environmental adaptation to oxidative stress.
RESUMO
The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-ß) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-ß signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-ß signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.