Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.939
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125036, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39197210

RESUMO

Sodium tripolyphosphate (STPP), as one of the many food additives, can cause gastrointestinal discomfort and a variety of adverse reactions when ingested by the human body, which is a great potential threat to human health. Therefore, it is necessary to develop a fast, sensitive and simple method to detect STPP in food. In this study, we synthesized a kind of nitrogen-doped carbon quantum dots (N-CQDs), and were surprised to find that the addition of STPP led to the gradual enhancement of the emission peaks of the N-CQDs, with a good linearity in the range of 0.067-1.96 µM and a low detection limit as low as 0.024 µM. Up to now, there is no report on the use of carbon quantum dots for the direct detection of STPP. Meanwhile, we found that the addition of Al3+ effectively bursts the fluorescence intensity of N-CQDs@STPP solution and has a good linear relationship in the range of 0.33-6.25 µM with a lower detection limit of 0.24 µM. To this end, we developed a fluorescent probe to detect STPP and Al3+. In addition, the probe was successfully applied to the detection of bread samples, which has great potential for practical application.


Assuntos
Carbono , Corantes Fluorescentes , Aditivos Alimentares , Limite de Detecção , Polifosfatos , Pontos Quânticos , Espectrometria de Fluorescência , Pontos Quânticos/química , Corantes Fluorescentes/química , Aditivos Alimentares/análise , Espectrometria de Fluorescência/métodos , Carbono/química , Polifosfatos/análise , Polifosfatos/química , Alumínio/análise , Nitrogênio/química , Pão/análise
2.
J Colloid Interface Sci ; 679(Pt A): 296-306, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39366259

RESUMO

The oxygen evolution reaction (OER) at the anode undergoes a sluggish multi-step process, thereby impeding overall water splitting. As the classical adsorbate evolution mechanism (AEM) involves multiple oxygen-containing intermediates, such as *OH, *O and *OOH, breaking the linear relationship of the adsorption energies between *OH and *OOH is the key to efficient oxygen evolution. Herein, we report a high-entropy FeCoNiAlZn layered double hydroxide decorated with defects (E-FeCoNiAlZn LDH) for boosting oxygen evolution in alkaline. The product exhibits high OER activity with a low overpotential of 220 at 10 mA cm-2 and outstanding stability with negligible decline after 100 h operation. The defects in E-FeCoNiAlZn LDH not only enhance the adsorption of *OH by metal sites but also foster the release of oxygen from lattice, which triggers the coupled oxygen evolution mechanism (COM). This mechanism has only *OH and *OO intermediates, perfectly avoiding the obstacles of linear relationship between *OH and *OOH. Theoretical calculations demonstrate that the introduction of defects enhances the adsorption of *OH due to the presence of unsaturated bonds. Additionally, it is evidence that the O 2p band is elevated, leading to a weakening of the metal-O bond and a reduction of the energy barrier for OO coupling.

3.
Clin Transl Med ; 14(10): e70036, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350478

RESUMO

Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.


Assuntos
Invasividade Neoplásica , Metástase Neoplásica , Células Neoplásicas Circulantes , Análise de Célula Única , Humanos , Metástase Neoplásica/genética , Análise de Célula Única/métodos , Invasividade Neoplásica/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética
4.
J Colloid Interface Sci ; 679(Pt A): 253-261, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362150

RESUMO

Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.

5.
Acta Biomater ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362448

RESUMO

Understanding matrix molecular activities that regulate the postnatal growth and remodeling of temporomandibular joint (TMJ) condylar cartilage and articular disc will enable the development of effective regenerative strategies targeting TMJ disorder. This study elucidated the distinct roles of type V collagen (collagen V) in regulating these two units. Studying the TMJ of young adult Col5a1+/- mice, we found loss of collagen V resulted in substantial changes in the proliferation, clustering, and density of progenitors in condylar cartilage, but did not have a major impact on disc cells that are more fibroblast-like. Although loss of collagen V led to thickened collagen fibrils with increased heterogeneity in the disc, there were no significant changes in local micromodulus except for a reduction at the posterior end of the inferior side. Following the induction of aberrant occlusal loading by the unilateral anterior crossbite (UAC) procedure, both wild-type (WT) and Col5a1+/- condylar cartilage exhibited salient remodeling, and Col5a1+/- condyle developed more pronounced degeneration and hypertrophy at the posterior end than the WT. In contrast, neither UAC nor collagen V deficiency induced marked changes in the morphology or mechanical properties of the disc. Together, our findings highlight the distinct roles of collagen V in regulating these two units during postnatal growth and remodeling, emphasizing its more crucial role in condylar cartilage due to its impact on the highly mechanosensitive progenitors. Results thus provide the foundation for using collagen V to improve the regeneration of TMJ and the care of patients with TMJ disorder. STATEMENT OF SIGNIFICANCE: Successful regeneration of temporomandibular joint (TMJ) condylar cartilage and articular disc remains a significant challenge due to the limited understanding of matrix molecular activities that regulate the formation and remodeling of these tissues. This study demonstrates that collagen V plays distinct and critical roles in these processes. In condylar cartilage, collagen V is essential for regulating progenitor cell fate and maintaining matrix integrity. In the disc, collagen V also regulates fibril structure and local micromechanics, but has a limited impact on cell phenotype or its remodeling response. Our findings establish collagen V as a key component in maintaining the integrity of these two units, with a more crucial role in condylar cartilage due to its impact on progenitor cell activities.

7.
Hum Brain Mapp ; 45(14): e70031, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360550

RESUMO

Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.


Assuntos
Envelhecimento , Lateralidade Funcional , Rede Nervosa , Humanos , Envelhecimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Adulto , Idoso , Função Executiva/fisiologia , Adulto Jovem , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Cognição/fisiologia
8.
Signal Transduct Target Ther ; 9(1): 266, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370455

RESUMO

Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Terapia de Alvo Molecular , Medicina de Precisão
9.
Adv Mater ; : e2407150, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370569

RESUMO

The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.

10.
Front Psychiatry ; 15: 1428425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371911

RESUMO

Background: Major depressive disorder (MDD) is associated with deficits in cognitive function, thought to be related to underlying decreased hedonic experiences. Further research is needed to fully elucidate the role of functional brain activity in this relationship. In this study, we investigated the neurofunctional correlate of the interplay between cognitive function and hedonic experiences in medication-free MDD using functional near-infrared spectroscopy (fNIRS). Methods: We examine differences of brain activation corresponding to the verbal fluency test (VFT) between MDD patients and healthy controls (HCs). Fifty-six MDD patients and 35 HCs underwent fMRI scanning while performing the VFT. In exploratory analyses, cognitive performance, as assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB), four dimensions of hedonic processing (desire, motivation, effort, and consummatory pleasure) measured by the Dimensional Anhedonia Rating Scale (DARS), and relative changes in oxygenated hemoglobin concentration during the VFT were compared across groups. Results: Patients with MDD demonstrated impairments in sustained attention and working memory, accompanied by lower total and subscale scores on the DARS. Compared to healthy controls, MDD patients exhibited reduced activation in the prefrontal cortex (PFC) during the VFT task (t = 2.32 to 4.77, p < 0.001 to 0.02, FDR corrected). DARS motivation, desire, and total scores as well as sustained attention, were positively correlated with activation in the dorsolateral PFC and Broca's area (p < 0.05, FDR corrected). Conclusions: These findings indicate that changes in prefrontal lobe oxygenated hemoglobin levels, a region implicated in hedonic motivation and cognitive function, may serve as potential biomarkers for interventions targeting individuals with MDD. Our results corroborate the clinical consensus that the prefrontal cortex is a primary target for non-invasive neuromodulatory treatments for depression.

11.
Adv Mater ; : e2412541, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350447

RESUMO

Chemical synthesis of unconventional topologically close-packed intermetallic nanocrystals (NCs) remains a considerable challenge due to the limitation of large volume asymmetry between the components. Here, a series of unconventional intermetallic Frank-Kasper C15 phase Ir2M (M = rare earth metals La, Ce, Gd, Tb, Tm) NCs is successfully prepared via a molten-salt assisted reduction method as efficient electrocatalysts for hydrogen evolution reaction (HER). Compared to the disordered counterpart (A1-Ir2Ce), C15-Ir2Ce features higher Ir-Ce coordination number that leads to an electron-rich environment for Ir sites. The C15-Ir2Ce catalyst exhibits excellent and pH-universal HER activity and requires only 9, 16, and 27 mV overpotentials to attain 10 mA cm-2 in acidic, alkaline, and neutral electrolytes, respectively, representing one of the best HER electrocatalysts ever reported. In a proton exchange membrane water electrolyzer, the C15-Ir2Ce cathode achieves an industrial-scale current density of 1 A cm-2 with a remarkably low cell voltage of 1.7 V at 80 °C and can operate stably for 1000 h with a sluggish voltage decay rate of 50 µV h-1. Theoretical investigations reveal that the electron-rich Ir sites intensify the polarization of *H2O intermediate on C15-Ir2Ce, thus lowering the energy barrier of the water dissociation and facilitating the HER kinetics.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39312117

RESUMO

Eriocheir sinensis is the main aquaculture species in China. With the continuous expansion of the aquaculture scale, the demand for E. sinensis seedlings was also increased. The water used in breeding has well-nourished and its discharge into the sea posed significant risks. This study sampled the wastewater discharge points of the E. sinensis seedlings in Sheyang County, Jiangsu Province, and the areas far from the discharge points that were not affected in March and May 2023, respectively. A large number of antibiotic resistance genes (ARGs) were found in the sediment of the wastewater discharge area, and the highest ARG was sulfonamide ARG-sul1 using qPCR analysis, while ARGs were almost undetectable in the areas not affected by wastewater discharge. The 16S rRNA sequence analysis results showed that the main bacterial phyla at the wastewater discharge point were Bacteroidetes, Proteobacteria, and Thermodesulfobacteria. In the control point, the main bacterial phyla were Proteobacteria, Chlorobacterium, and Thermodesulfobacteria. There were significant differences in the composition of microbial communities between the two points, and the samples at the wastewater discharge point were more clustered and had higher similarity. The correlation network and redundancy analysis indicated that the phyla Bacteroidetes, Firmicutes, and Proteobacteria at the wastewater discharge points were positively correlated with most ARGs. The wastewater discharge had no effect on heavy metals from the two points. This study sets a foundation for future research by identifying key microbial taxa as potential ARG carriers and examining the interactions between microbial communities, ARGs, and heavy metals.

13.
Pestic Biochem Physiol ; 204: 106104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277426

RESUMO

C-type lectins (CTLs) play a pivotal role in the regulation of insect immunity and growth, making them potential molecular targets for RNA interference (RNAi)-mediated pest control. Although multiple CTLs have been identified in the genomes of various insects, their specific functions and underlying molecular mechanisms remain unclear. In the present study, a novel CTL, Tcctl13 with a single CRD, was identified in Tribolium castaneum. Tcctl13 is expressed in diverse immune-related tissues and developmental stages, with a notable increase in its expression upon exposure to lipopolysaccharides (LPS) and peptidoglycan (PGN). Molecular docking and enzyme-linked immunosorbent assay (ELISA) analyses revealed that TcCTL13 possesses the ability interacted with LPS and PGN. The binding and agglutinating activities of recombinant TcCTL13 (rTcCTL13) were demonstrated against both gram-negative and positive bacteria. After using RNAi to silence Tcctl13, the expression of the eight antimicrobial peptide (AMP) genes was significantly reduced. In addition, knocking down Tcctl13 during the early larval or pupal stage hindered, the normal metamorphosis process in T. castaneum, ultimately leading to the demise of all beetles. Further research showed that Tcctl13 and nine AMPs were significantly downregulation after 20-Hydroxyecdysone (20E) injection. Instead, the up-regulation of Tcctl13 and six AMPs was observed following interference with the 20E receptor (ecdysone receptor, EcR), indicating that the function of Tcctl13 is regulated by 20E in T. castaneum. Collectively, these findings suggest that Tcctl13 plays a role in the regulation of innate immunity and development in T. castaneum, offering a promising molecular target for managing insect pests using RNAi-based approaches.


Assuntos
Imunidade Inata , Proteínas de Insetos , Interferência de RNA , Tribolium , Animais , Tribolium/genética , Tribolium/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipopolissacarídeos/farmacologia , Peptidoglicano , Larva
14.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273108

RESUMO

Lilium is one of the most widely cultivated ornamental bulbous plants in the world. Although research has shown that variable temperature treatments can accelerate the development process from vegetative to reproductive growth in Lilium, the molecular regulation mechanisms of this development are not clear. In this study, Lbr-miR171b and its target gene, LbrSCL6, were selected and validated using transgenic functional verification, subcellular localization, and transcriptional activation. This study also investigated the differential expression of Lbr-miR171b and LbrSCL6 in two temperature treatment groups (25 °C and 15 °C). Lbr-miR171b expression significantly increased after the temperature change, whereas that of LbrSCL6 exhibited the opposite trend. Through in situ hybridization experiments facilitated by the design of hybridization probes targeting LbrSCL6, a reduction in LbrSCL6 expression was detected following variable temperature treatment at 15 °C. The transgenic overexpression of Lbr-miR171b in plants promoted the phase transition, while LbrSCL6 overexpression induced a delay in the phase transition. In addition, LbrWOX4 interacted with LbrSCL6 in yeast two-hybrid and bimolecular fluorescence complementation assays. In conclusion, these results explain the molecular regulatory mechanisms governing the phase transition in Lilium.


Assuntos
Regulação da Expressão Gênica de Plantas , Lilium , MicroRNAs , Proteínas de Plantas , Lilium/genética , Lilium/metabolismo , Lilium/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Temperatura
15.
Am J Stem Cells ; 13(4): 212-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308766

RESUMO

Sensorineural deafness mainly occurs due to damage to hair cells, and advances in stem cell technology, especially the application of induced pluripotent stem cells (iPSCs) and adult stem cells, provides new possibilities for hair cell regeneration. This review describes the basic knowledge of stem cells and their important applications in regenerative medicine, as well as recent progress in stem cell research in the field of hair cell regeneration, especially the induced differentiation of hair-like cells. At the same time, we also point out the challenges facing current research, including differentiation efficiency, cell stability issues, and treatment safety and long-term efficacy considerations. Finally, we look forward to the direction of future research, and emphasize the importance of the cell differentiation mechanism, simulation of the inner ear microenvironment, safety assessment, and personalized treatment strategies. In conclusion, despite many challenges, stem cell technology has shown great potential in the field of hearing research and is expected to bring revolutionary treatment options for patients with sensorineural hearing loss in the future.

16.
J Immunother Cancer ; 12(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244215

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has made remarkable achievements, but newly identified armored and cold tumors cannot respond to ICB therapy. The high prevalence of concomitant medications has huge impact on immunotherapeutic responses, but the clinical effects on the therapeutic outcome of armored and cold tumors are still unclear. METHODS: In this research, using large-scale transcriptomics datasets, the expression and potential biological functions of angiotensin II receptor 1 (AGTR1), the target of angiotensin receptor blocker (ARB), were investigated. Next, the roles of ARB in tumor cells and tumor microenvironment cells were defined by a series of in vitro and in vivo assays. In addition, the clinical impacts of ARB on ICB therapy were assessed by multicenter cohorts and meta-analysis. RESULTS: AGTR1 was overexpressed in armored and cold tumors and associated with poor response to ICB therapy. ARB, the inhibitor for AGTR1, only suppressed the aggressiveness of tumor cells with high AGTR1 expression, which accounted for a very small proportion. Further analysis revealed that AGTR1 was always highly expressed in cancer-associated fibroblasts (CAFs) and ARB inhibited type I collagen expression in CAFs by suppressing the RhoA-YAP axis. Moreover, ARB could also drastically reverse the phenotype of armored and cold to soft and hot in vivo, leading to a higher response to ICB therapy. In addition, both our in-house cohorts and meta-analysis further supported the idea that ARB can significantly enhance ICB efficacy. CONCLUSION: Overall, we identify AGTR1 as a novel target in armored and cold tumors and demonstrate the improved therapeutic efficacy of ICB in combination with ARB. These findings could provide novel clinical insight into how to treat patients with refractory armored and cold tumors.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Feminino
17.
J Agric Food Chem ; 72(38): 21112-21121, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39256187

RESUMO

Acetochlor residues can contaminate anoxic habitats where anaerobic microbial transformation dominates. Herein, a highly efficient anaerobic acetochlor-degrading consortium ACT6 was enriched using sulfate and acetochlor as selection pressures. The acclimated consortium ACT6 showed an 8.7-fold increase in its ability to degrade acetochlor compared with the initial consortium ACT1. Two degradation pathways of acetochlor were found: reductive dechlorination and thiol-substitution dechlorination in the chloroacetyl group, in which the latter dominated. Acclimation enhanced the abundances of Desulfovibrio, Proteiniclasticum, and Lacrimispora from 0.7 to 28.0% (40-fold), 4.7 to 18.1% (4-fold), and 2.3 to 12.3% (5-fold), respectively, which were positively correlated with sulfate concentrations and acetochlor degradation ability. Three acetochlor-degrading anaerobes were isolated from the acclimated consortium ACT6, namely Cupidesulfovibrio sp. SRB-5, Proteiniclasticum sp. BAD-10, and Lacrimispora sp. BAD-7. This study provides new insights into the anaerobic catabolism of acetochlor and the anaerobic treatment of acetochlor in wastewater.


Assuntos
Biodegradação Ambiental , Herbicidas , Sulfatos , Toluidinas , Herbicidas/metabolismo , Herbicidas/química , Toluidinas/metabolismo , Toluidinas/química , Anaerobiose , Sulfatos/metabolismo , Sulfatos/química , Consórcios Microbianos , Halogenação , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
18.
Sci Rep ; 14(1): 22338, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333616

RESUMO

Understanding the spatiotemporal characteristics and comprehensive service capabilities of various ecosystem services is crucial for maintaining regional ecosystem security, and clarifying the driving mechanisms of ecosystem services plays a guarantee for achieving regional sustainable development. Based on the ecological issues of Shanxi Province (SXP) in China, an assessment system covering eight targeted ecosystem services were constructed to quantitatively analyze the spatio-temporal patterns and contribution rates of driving factors. The water conservation, sand fixation, environment purification and habitat quality in the Loess Hills of western SXP have improved, with significant increase in hotspots. The comprehensive service capacity of ecosystem services in the Fenwei Basin (central SXP) has deteriorated, and the coldspots have expanded. The water conservation, carbon storage, habitat quality and recreation culture in the Yanshan-Taihang Mountains (eastern SXP) were enhanced, while product supply, carbon storage and environment purification were deteriorated. Land use is the dominant influencing factor on product supply. Water and soil conservation, sand fixation, and environment purification are dominated by climate factors. Carbon storage, habitat quality and recreation culture are influenced by underlying surface conditions. The current study provided a research paradigm, which will help the government with appropriate management policies to ensure the effectiveness of ecological protection and restoration, and offers insights for facilitating ecological sustainability and economic transformation in resource-based regions worldwide.

19.
Gut Pathog ; 16(1): 50, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334474

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer (CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown. RESULTS: In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon adenocarcinomas in TCGA database to assess the relationship between patients' survival and F. nucleatum abundance. Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addition, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA damage. CONCLUSIONS: Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.

20.
Public Health Rep ; : 333549241278631, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342451

RESUMO

OBJECTIVES: Public health emergencies can elevate the risk for intimate partner violence (IPV). Our objectives were 2-fold: first, to assess the prevalence of physical IPV and increased aggression from a husband or partner that occurred during pregnancy and was perceived to be due to the COVID-19 pandemic; second, to examine associations between these experiences and (1) COVID-19-related stressors and (2) postpartum outcomes. METHODS: We used data from the Pregnancy Risk Assessment Monitoring System that were collected in 29 US jurisdictions among individuals with a live birth in 2020. We estimated the prevalence of violence during pregnancy by demographic characteristics and COVID-19-related stressors. We calculated adjusted prevalence ratios (APRs) to examine associations of physical IPV or increased aggression with COVID-19-related stressors, postpartum outcomes, and infant birth outcomes. RESULTS: Among 14 154 respondents, 1.6% reported physical IPV during pregnancy, and 3.1% reported increased aggression by a husband or partner due to the COVID-19 pandemic. Respondents experiencing any economic, housing, or childcare COVID-19-related stressors reported approximately twice the prevalence of both types of violence as compared with those without COVID-19-related stressors. Physical IPV and increased aggression were associated with a higher prevalence of postpartum depressive symptoms (APRs, 1.73 and 2.28, respectively) and postpartum cigarette smoking (APRs, 1.74 and 2.19). Physical IPV was associated with a lower prevalence of attending postpartum care visits (APR, 1.84). CONCLUSIONS: Our findings support the need for ongoing efforts to prevent IPV during pregnancy and to ensure the availability of resources during public health emergencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA