Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(32): 22829-22839, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086019

RESUMO

The molecular editing of ketones represents an appealing strategy due to its ability to maximize the structural diversity of ketone compounds in a straightforward manner. However, developing efficient methods for the arbitrary modification of ketonic molecules, particularly those integrated within complex skeletons, remains a significant challenge. Herein, we present a unique strategy for ketone recasting that involves radical acylation of pre-functionalized ketones facilitated by N-heterocyclic carbene and photo dual catalysis. This protocol features excellent substrate tolerance and can be applied to the convergent synthesis and late-stage functionalization of structurally complex bioactive ketones. Mechanistic investigations, including experimental studies and density functional theory (DFT) calculations, shed light on the reaction mechanism and elucidate the basis of the regioselectivity.

2.
Sci Total Environ ; 949: 175193, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094643

RESUMO

Cadmium (Cd) and arsenic (As), two toxic elements to humans, are ubiquitously coexisting contaminant found in paddy fields. The accumulation of Cd and As in rice, a major food source for many people around the world, can pose a serious threat to food safety and human health. Therefore, it is crucial to be aware of these contaminants and take adequate measures to reduce the accumulation of these two elements in rice. Developing an effective method to simultaneously reduce the accumulation of Cd) and As in rice is challenging. In this study, a pot experiment was conducted to investigate the synergistic effects of selenium (Se), iron (Fe) and phosphorus (P) on the uptake, transport and accumulation of cadmium and arsenic in rice by analyzing the physical and chemical properties of the soil, the elemental concentrations and their interrelationships in the rice tissues, and the composition and morphology of the iron plaque (IP). The results showed that the combined treatments of Se, Fe and P had positive effects on reducing Cd and As accumulation in rice, reducing Cd concentrations in brown rice by 3.86-51.88 % and As concentrations by 25.37-40.81 %. The possible mechanisms for the reduction of As and Cd concentrations in rice grains were: (i) Combined application of Fe, P and Se can effectively reduce the soil available Cd and As concentration. (ii) Combined application significantly improved the formation of IP at the tillering stage and increased the crystalline iron oxides in IP, promoting the deposition of SiO2 in rice roots, thereby effectively inhibiting the uptake of Cd and As by rice roots. (iii) Interplay and interaction between elements facilitated by transporter proteins could contribute to the synergistic mitigation of Cd and As by Se, Fe and P. This study provides a valuable new approach for effective control of Cd and As concentration of rice grown in co-contaminated soil.


Assuntos
Arsênio , Cádmio , Ferro , Oryza , Fósforo , Selênio , Poluentes do Solo , Cádmio/metabolismo , Arsênio/análise , Poluentes do Solo/análise , Fósforo/análise , Solo/química
3.
Plant Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976580

RESUMO

Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).

4.
J Hazard Mater ; 477: 135298, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053055

RESUMO

The biogeochemical cycle of biogenic manganese oxides (BioMnOx) is closely associated with the environmental behavior and fate of various pollutants. It is significantly interfered by many metals, such as Cu and Fe. However, the bacterial molecular responses are not clear. Here, the effects of Cu(II) and Fe(III) on oxidation of manganese by Pseudomonas putida MnB1 and the bacterial molecular response mechanisms have been studied. The bacterial oxidation of manganese were promoted by both Fe(III) and Cu(II) and the final manganese oxidation rate of the Cu(II) group exceeded 16 % that of the Fe(III) group. The results of transcriptome indicated that Cu(II) promoted manganese oxidation by up-regulating the expression levels of multicopper oxidase (MCO) and peroxidase(POD), and by stimulating electron transfer, while Fe(III) promoted this process by accelerating the electron transfer and nitrogen cycling, and activating POD. The protein-protein interaction (PPI) network indicated that the MCO genes (mnxG and mcoA) were directly linked to the copper homeostasis proteins (cusA, cusB, czcC and cusF). Cytochrome c was closely related to the genes related to nitrogen cycling (glnA, glnL, and putA) and electrons transfer (cycO, cycD, nuoA, nuoK, and nuoL), which also promoted manganese oxidation. This study provides a molecular level insight into the oxidation of Mn(II) by Pseudomonas putida MnB1 with Cu(II) and/or Fe(III) ions.


Assuntos
Cobre , Compostos de Manganês , Óxidos , Pseudomonas putida , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Cobre/metabolismo , Cobre/química , Compostos de Manganês/metabolismo , Compostos de Manganês/química , Óxidos/metabolismo , Óxidos/química , Oxirredução , Ferro/metabolismo , Ferro/química , Oxirredutases/metabolismo , Oxirredutases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
5.
Chemosphere ; 363: 142903, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029704

RESUMO

Selenium (Se) fortification is witnessed to simultaneously inhibit absorbing Cadmium (Cd) and Arsenic (As) by rice plants, but the mechanism is unclear. Here, the effects of Se on the root morphology, iron plaque (IP) content, soil Fe2+ content, radial oxygen loss (ROL), and enzyme activities of the rice plants in the soil contaminated by Cd and As were intensively investigated through the hydroponic and soil experiments. Se effectively alleviated the toxic effects of Cd and As on the plants and the dry weight, root length, and root width were increased by 203.18%, 33.41%, and 52.81%, respectively. It also elucidated that ROL was one of the key factors to elevate IP formation by Se and the specific pathways of Se enhancing ROL were identified. ROL of the plants in the experiment group treated by Se was increased 36.76%, and correspondingly IP was magnified 50.37%, compared to the groups with Cd and As. It was owing to Se significantly increased the root porosity (62.11%), facilitating O2 transport to the roots. Additionally, Se enhanced the activities of catalase (CAT) and superoxide dismutase (SOD) to promote the catalytic degradation of ROS induced by Cd and As stress. It indirectly increased O2 release in the rhizosphere, which benefit to form more robust IP serve as stronger barrier to Cd and As. The results of our study provide a novel molecular level insight for Se promoting root IP to block Cd and As uptake by the rice plants.


Assuntos
Arsênio , Cádmio , Ferro , Oryza , Raízes de Plantas , Selênio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Oryza/metabolismo , Oryza/efeitos dos fármacos , Arsênio/metabolismo , Arsênio/toxicidade , Selênio/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Solo/química , Catalase/metabolismo , Rizosfera , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Adv ; 10(30): eadn8401, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047096

RESUMO

The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent ß-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of ß-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.

7.
Environ Pollut ; 355: 124148, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735457

RESUMO

Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.


Assuntos
Cádmio , Monitoramento Ambiental , Aprendizado de Máquina , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Solo/química , China , Monitoramento Ambiental/métodos , Clima , Teorema de Bayes , Mudança Climática
8.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473796

RESUMO

Histones are the core components of the eukaryote chromosome, and have been implicated in transcriptional gene regulation. There are three major isoforms of histone H3 in Arabidopsis. Studies have shown that the H3.3 variant is pivotal in modulating nucleosome structure and gene transcription. However, the function of H3.3 during development remains to be further investigated in plants. In this study, we disrupted all three H3.3 genes in Arabidopsis. Two triple mutants, h3.3cr-4 and h3.3cr-5, were created by the CRISPR/Cas9 system. The mutant plants displayed smaller rosettes and decreased fertility. The stunted growth of h3.3cr-4 may result from reduced expression of cell cycle regulators. The shorter stamen filaments, but not the fertile ability of the gametophytes, resulted in reduced fertility of h3.3cr-4. The transcriptome analysis suggested that the reduced filament elongation of h3.3cr-4 was probably caused by the ectopic expression of several JASMONATE-ZIM DOMAIN (JAZ) genes, which are the key repressors of the signaling pathway of the phytohormone jasmonic acid (JA). These observations suggest that the histone variant H3.3 promotes plant growth, including rosette growth and filament elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
9.
J Environ Sci (China) ; 139: 496-515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105072

RESUMO

Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.


Assuntos
Manganês , Metais Pesados , Manganês/química , Adsorção , Metais Pesados/química , Óxidos/química , Compostos de Manganês/química , Oxirredução
10.
Int J Biol Macromol ; 258(Pt 2): 129035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158068

RESUMO

In this study, Lycoris chinensis bulbs of four developmental stages were compared for starch characteristics. Based on correlation analysis and hierarchical cluster analysis, the relationships among 36 traits were discussed. Compared to commonly consumed starches, L. chinensis starch had higher amylose content (33.4-43.2 %) and weight-average molar mass (36410-82,781 kDa), lower gelatinization temperature (61.8-68.1 °C), gel hardness (19.0-39.5 g) and viscosities. Among developmental stages, starches varied significantly in characteristics. As compared to juvenile stage (S1), mature bulbs (S4) had higher amylose content, lower gelatinization temperature, weight-average molar mass and degree of polymorphism. Correlation analysis revealed that the molecular weight-related traits had significantly positive correlations to gelatinization temperature (Tp, p < 0.05), positive but weak correlations to traits of particle size distribution, significantly negative correlations to AAC and many parameters of viscosity properties (p < 0.05). Based on the results of correlation analysis and hierarchical cluster analysis, the 36 traits of starch characteristics were proposed to be divided into three groups: particle size-related traits, molecular weight-related traits and AAC-related traits. The information presented in the current study are useful for future studies on starches of Lycoris and other bulb species, and instructive for future studies in investigating the "Structure-Function" relationship in starch.


Assuntos
Amilose , Lycoris , Amilose/análise , Amido , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA