Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.928
Filtrar
1.
J Ovarian Res ; 17(1): 99, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730385

RESUMO

With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.


Assuntos
Cromatina , Oócitos , Transcriptoma , Humanos , Oócitos/metabolismo , Cromatina/metabolismo , Cromatina/genética , Feminino , Perfilação da Expressão Gênica , Nucléolo Celular/metabolismo , Nucléolo Celular/genética
2.
World J Stem Cells ; 16(4): 334-352, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38690516

RESUMO

Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.

3.
Chemistry ; : e202400741, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745544

RESUMO

To address key concerns on solid-state pyrene-based luminescent materials, we propose a novel and efficient mechanical bond strategy. This strategy results in a transformation from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) effect and a remarkable enhancement of pyrene emission in the solid state. More importantly, an unusual purification of emission is also achieved. Through computational calculation and experimental characterization, finally determined by X-ray diffraction analysis, we prove that the excellent emissions result from the refined molecular arrangements, including reduced π-π stacking, well-ordered packing and enhanced structural stability. This work demonstrates the potential of mechanical bond in the field of organic luminescent molecules, providing a new avenue for developing high-performance organic luminescent materials and beyond.

4.
Front Oncol ; 14: 1309681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746684

RESUMO

Objectives: In this study, we compared the dynamic changes in body composition during XELOX/SOX chemotherapy in patients with gastric cancer. Furthermore, we investigated the potential impact of these changes on the occurrence of toxic side effects. Methods: Patients with gastric cancer who received adjuvant or first-line XELOX/SOX chemotherapy between January 2020 and June 2023 were enrolled. The Brief Conghua Scale was used to assess energy intake, and nutritional management was carried out with reference to the Chinese Guidelines for Nutritional Therapy of Cancer 2020. The NRS 2002 Nutritional Risk Screening Scale, PG-SGA scale, bioelectrical impedance analysis, and dynamic changes in lumbar 3 vertebral skeletal muscle index were compared between baseline and post-chemotherapy in the study. The neutropenia was evaluated using the Common Terminology Criteria for Adverse Events V.5.0, developed by the National Institutes of Health. Results: Dynamic follow-up was completed in 39 cases, with a mean follow-up time of 117.62 ± 43.38 days. The incidence of sarcopenia increased significantly after chemotherapy, escalating from 46.2% to 51.3%. After chemotherapy, the mean L3SMI decreased from 36.00 cm2/m2 to 34.99 cm2/m2. Furthermore, when compared to pre-chemotherapy values, the body composition indexes body mass index (BMI), SL3, fat mass free index (FFMI), lean body mass (LBM), and body surface area (BSA) were significantly reduced after chemotherapy. Regardless of baseline or post-chemotherapy status, the incidence of grade ≥ 3 neutropenia was significantly higher in the sarcopenia group than in the non-sarcopenia group. Furthermore, when the skeletal muscle index decreased during chemotherapy, the incidence of grade ≥ 3 neutropenia was significantly higher in both the sarcopenia and non-sarcopenia groups compared to baseline. When the incidence of grade ≥ 3 neutropenia in the post-chemotherapy sarcopenia group was compared to baseline status, the increase was significantly higher in the sarcopenia group than in the maintenance/increase group. Conclusions: Skeletal muscle mass decreased progressively during XELOX/SOX chemotherapy in gastric cancer patients, followed by a higher incidence of grade ≥ 3 neutropenia.

5.
Angew Chem Int Ed Engl ; : e202406417, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712562

RESUMO

Responsive organic luminescent aggregates have a wide range of application fields, but currently there is still a lack of reasonable molecular design strategies. Introducing ion-π interactions into molecules can effectively alter their luminescent properties. However, current research typically focuses on ion localization at luminescent conjugated groups with the strong interaction forces. In this work, we introduce the flexible alkoxy chain spacers between fluorescent conjugated groups and ion-π interaction sites, and then adjust the fluorescence performance of the molecule by changing the strength of ion-π interactions. Bromine ion-based molecules with strong ion-π interactions exhibit high and stable fluorescence quantum yields in crystals and amorphous powders under the external stimuli. Hexafluorophosphate ion-based molecules with weak ion-π interactions have the high fluorescence quantum yield in crystals and very low fluorescence quantum yield in amorphous powders, showing variable fluorescence intensities under external stimuli. This demonstrates a new class of responsive organic luminescent solid-state materials.

6.
Cell Biochem Biophys ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713402

RESUMO

Nonalcoholic fatty liver disease (NAFLD) become a main public health concern, and is characterized by lipid accumulation in the hepatocytes. We found that overexpression of lncRNA MEG3 significantly reduced the expression of FOXO1, ACC1, and FAS, and subsequently decreased the lipid accumulation in HepG2 cells. Moreover, inhibition of lncRNA MEG3 could increase the lipid accumulation and the mRNA and protein levels of FOXO1, ACC1, and FAS. Further study showed that lncRNA MEG3 regulates the lipogenesis process by inhibiting the entry of FOXO1 into the nucleus translocation. Our study demonstrated that lncRNA MEG3 regulates de novo lipogenesis by decreasing the expression and nucleus translocation of FOXO1 in HepG2 cells, suggesting that lncRNA MEG3 could be a promising therapeutic target in lipid metabolic disorders.

7.
IEEE Comput Graph Appl ; PP2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700972

RESUMO

Promoting the development of electric vehicles requires the widespread deployment of charging infrastructure, which poses numerous technical and financial constraints. Despite extensive research focusing on optimizing charging station locations, few studies have accounted for charging station utilization and the factors that influence it. This study aims to evaluate charging station operations and explore charging station utilization to inform planning and facilitate better utilization of funds for expanding charging infrastructure. We present EVCSeer, a visual analytics system that utilizes representative predictive models and well-designed visualizations to analyze factors affecting charging station utilization, compare deployment strategies, and optimize utilization. The system also enables "what-if" analysis of charging station deployments. Two case studies, expert interviews, and a qualitative user study support the validity and usefulness of EVCSeer.

8.
Phytomedicine ; 129: 155627, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38696924

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by an exaggerated response to infection. In the lungs, one of the most susceptible organs, this can manifest as acute respiratory distress syndrome (ARDS). Shenfu (SF) injection is a prominent traditional Chinese medicine used to treat sepsis. However, the exact mechanism of its action has rarely been reported in the literature. PURPOSE: In the present study, we detected the protective effect of SF injection on sepsis-induced ARDS and explored its underlying mechanism. METHODS: We investigated the potential targets and regulatory mechanisms of SF injections using a combination of network pharmacology and RNA sequencing. This study was conducted both in vivo and in vitro using a mouse model of ARDS and lipopolysaccharide (LPS)-stimulated MLE-12 cells, respectively. RESULTS: The results showed that SF injection could effectively inhibit inflammation, oxidative stress, and apoptosis to alleviate LPS-induced ARDS. SF inhibited the PI3K-AKT pathway, which controls autophagy and apoptosis. Subsequently, MLE-12 cells were treated with 3-methyladenine to assess its effects on autophagy and apoptosis. Additional experiments were conducted by adding rapamycin, an mTOR antagonist, or SC79, an AKT agonist, to investigate the effects of SF injection on autophagy, apoptosis, and the PI3K-AKT pathway. CONCLUSION: Overall, we found that SF administration could enhance autophagic activity, reduce apoptosis, suppress inflammatory responses and oxidative stress, and inhibit the PI3K-AKT pathway, thus ameliorating sepsis-induced ARDS.

9.
J Colloid Interface Sci ; 668: 264-271, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678882

RESUMO

Electricity-driven nitrate (NO3-) to ammonia (NH3) conversion presents a unique opportunity to simultaneously eliminate nitrate from sewage while capturing ammonia. However, the Faradaic efficiency and ammonia yield in this eight-electron process remain unsatisfactory, underscoring the critical need for more effective electrocatalysts. In this study, a RuCo alloy nanosheets electrodeposited on pinewood-derived three-dimensional porous carbon (RuCo@TDC) is introduced as a highly-efficient electrocatalyst for the nitrate reduction reaction. The RuCo@TDC catalyst exhibits superior electrocatalytic performance, achieving the highest NH3 yield of 2.02 ± 0.11 mmol h-1 cm-2 at -0.6 V versus the reversible hydrogen electrode (vs. RHE) and the highest Faradaic efficiency of 95.7 ± 0.8 % at -0.2 V vs. RHE in an electrolyte mixture of 0.1 M KOH and 0.1 M KNO3. Furthermore, the Zn-NO3- battery using RuCo@TDC as the cathode provides a maximum power density of 2.46 mW cm-2 and a satisfactory NH3 yield of 1110 µg h-1 cm-2.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38652611

RESUMO

The issue of traffic congestion poses a significant obstacle to the development of global cities. One promising solution to tackle this problem is intelligent traffic signal control (TSC). Recently, TSC strategies leveraging reinforcement learning (RL) have garnered attention among researchers. However, the evaluation of these models has primarily relied on fixed metrics like reward and queue length. This limited evaluation approach provides only a narrow view of the model's decision-making process, impeding its practical implementation. Moreover, effective TSC necessitates coordinated actions across multiple intersections. Existing visual analysis solutions fall short when applied in multi-agent settings. In this study, we delve into the challenge of interpretability in multi-agent reinforcement learning (MARL), particularly within the context of TSC. We propose MARLens, a visual analytics system tailored to understand MARL-based TSC. Our system serves as a versatile platform for both RL and TSC researchers. It empowers them to explore the model's features from various perspectives, revealing its decision-making processes and shedding light on interactions among different agents. To facilitate quick identification of critical states, we have devised multiple visualization views, complemented by a traffic simulation module that allows users to replay specific training scenarios. To validate the utility of our proposed system, we present three comprehensive case studies, incorporate insights from domain experts through interviews, and conduct a user study. These collective efforts underscore the feasibility and effectiveness of MARLens in enhancing our understanding of MARL-based TSC systems and pave the way for more informed and efficient traffic management strategies.

11.
J Pain Res ; 17: 1441-1451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628430

RESUMO

Background: Studies have shown that oral oxycontin tablets can be used for opioid titration. The European Society for Medical Oncology (ESMO) guidelines for adult cancer pain recommend opioid titration through the parenteral route, usually the intravenous or subcutaneous route. Patient-controlled subcutaneous analgesia (PCSA) with hydromorphone needs further evaluation for opioid titration. This prospective multicenter study was designed to compare the efficacy and safety of hydromorphone PCSA with oral oxycontin tablets for opioid titration of cancer pain. Patients and Methods: Eligible patients with cancer pain were randomly assigned in a 1:1 ratio to the PCSA group or the oxycontin group for dose titration. Different titration methods were given in both groups depending on whether the patient had an opioid tolerance. The primary endpoint of this study was time to successful titration (TST). Results: A total of 256 patients completed this study. The PCSA group had a significantly lower TST compared with the oxycontin group (median [95% confidence interval (CI)], 5.5[95% CI:2.5-11.5] hours vs.16.0 [95% CI:11.5-22.5] hours; p<0.001). The frequency (median; interquartile) of breakthrough pain (Btp) over 24 hours was significantly lower in the PCSA group (2.5;2.0-3.5) than in the oxycontin group.(3.0; 2.5-4.5) (p=0.04). The pain was evaluated by numeric rating scale (NRS) score at 12 hours after the start of titration. The pain score (median; interquartile) was significantly lower in the PCSA versus the oxycontin group (2.5;1.5-3.0) vs 4.5;3.0-6.0) (p=0.02). The equivalent dose of oral morphine (EDOM) for a successful titration was similar in both groups (p=0.29), but there was a significant improvement in quality of life (QoL) in both groups (p=0.03). No between-group difference in the incidence of opioid-related adverse effects was observed (p=0.32). Conclusion: Compared with oral oxycontin tablet, the use of PCSA with hydromorphone achieved a shorter titration duration for patients with cancer pain (p<0.001), without significantly increasing adverse events (p=0.32).

12.
Curr Pharm Des ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38616753

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE: The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS: The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS: A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION: Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.

13.
Org Lett ; 26(15): 3069-3074, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38557118

RESUMO

Free radical three-component nitration/spirocyclization of unsaturated sulfonamides/amides with tert-butyl nitrite was developed for the construction of diverse NO2-revised 4-azaspiro[4.5]decanes. This tandem system featured metal-free participation, simple operation, good selectivity/yields, and a green/low-cost O source. Meanwhile, one nitro-containing complex molecule and a scaled-up operation were performed well to test the synthetic potential of the cascade reaction. Isotopic labeling, radical inhibition experiments, and DFT analysis were carried out to gain insight into the reaction process.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38561861

RESUMO

BACKGROUND AND AIM: Endoscopic resection has been successfully used for the removal of digestive submucosal tumors (SMTs). However, the cardia has been considered a challenging location for endoscopic resection due to its narrow lumen and sharp angle. The objective of this study was to establish a clinical scoring model to grade the technical difficulty of endoscopic resection for cardial SMTs. METHODS: A total of 246 patients who suffered cardial SMTs and received endoscopic resection were included in this retrospective study. All of them were randomized into the training cohort (n = 123) or internal validation cohort (n = 123). Potential predictors were analyzed using univariate analysis. Then, covariates with P < 0.05 were selected for the multivariate logistic regression model. The ß coefficients from the logistic regression model were used to create a scoring system for technical difficulty prediction by rounding the score to the nearest integer of the absolute ß coefficient value. RESULTS: The clinical score consisted of the following factors: male gender (2 points), extraluminal growth (3 points), and maximum diameter ≥3 cm (3 points). The scoring model demonstrated good discriminatory power, with an area under the receiver operating characteristic curve of 0.860 and a 95% confidence interval of 0.763-0.958. The model also showed a good goodness of fit in the Hosmer-Lemeshow test (P = 0.979). In the training cohort, the probability of encountering technical difficulty in the easy (score = 0), intermediate (score = 1-3), difficult (score = 4-6), and very difficult (score >6) categories was 0, 6.8%, 33.3%, and 100.0%, respectively; similarly, in the validation cohort, it was 0, 5.6%, 22.2%, and 50.0%, respectively. CONCLUSIONS: This scoring system could serve as a valuable tool for clinicians in predicting the technical difficulty of endoscopic resection for cardial SMTs.

15.
Cancer Med ; 13(7): e7147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562035

RESUMO

BACKGROUND: Serum iron, an essential component of hemoglobin (Hb) synthesis in vivo, is a crucial parameter for evaluating the body's iron storage and metabolism capacity. Iron deficiency leads to reduced Hb synthesis in red blood cells and smaller red blood cell volume, ultimately resulting in iron-deficiency anemia. Although serum iron cannot independently evaluate iron storage or metabolism ability, it can reflect iron concentration in vivo and serve as a good predictor of iron-deficiency anemia. Therefore, exploring the influence of different serum iron levels on anemia and diagnosing and treating iron deficiency in the early stages is of great significance for patients with lung cancer. AIM: This study aims to explore the related factors of cancer-related anemia (CRA) in lung cancer and construct a nomogram prediction model to evaluate the risk of CRA in patients with different serum iron levels. METHODS: A single-center retrospective cohort study was conducted, including 1610 patients with lung cancer, of whom 1040 had CRA. The relationship between CRA and its influencing factors was analyzed using multiple linear regression models. Lung cancer patients were divided into two groups according to their serum iron levels: decreased serum iron and normal serum iron. Each group was randomly divided into a training cohort and a validation cohort at a ratio of 7:3. The influencing factors were screened by univariate and multivariate logistic regression analyses, and nomogram models were constructed. The area under the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the models. RESULTS: CRA in lung cancer is mainly related to surgery, chemotherapy, Karnofsky Performance Status (KPS) score, serum iron, C-reactive protein (CRP), albumin, and total cholesterol (p < 0.05). CRA in lung cancer patients with decreased serum iron is primarily associated with albumin, age, and cancer staging, while CRA in lung cancer patients with normal serum iron is mainly related to CRP, albumin, total cholesterol, and cancer staging. The area under the ROC curve of the training cohort and validation cohort for the prediction model of lung cancer patients with decreased serum iron was 0.758 and 0.760, respectively. Similarly, the area under the ROC curve of the training cohort and validation cohort for the prediction model of lung cancer patients with normal serum iron was 0.715 and 0.730, respectively. The calibration curves of both prediction models were around the ideal 45° line, suggesting good discrimination and calibration. DCA showed that the nomograms had good clinical utility. CONCLUSION: Both models have good reliability and validity and have significant clinical value. They can help doctors better assess the risk of developing CRA in lung cancer patients. CRP is a risk factor for CRA in lung cancer patients with normal serum iron but not in patients with decreased serum iron. Therefore, whether CRP and the inflammatory state represented by CRP will further aggravate the decrease in serum iron levels, thus contributing to anemia, warrants further study.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/complicações , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/etiologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Ferro , Albuminas , Proteína C-Reativa , Colesterol , Nomogramas
16.
Artigo em Inglês | MEDLINE | ID: mdl-38683722

RESUMO

The fund investment industry heavily relies on the expertise of fund managers, who bear the responsibility of managing portfolios on behalf of clients. With their investment knowledge and professional skills, fund managers gain a competitive advantage over the average investor in the market. Consequently, investors prefer entrusting their investments to fund managers rather than directly investing in funds. For these investors, the primary concern is selecting a suitable fund manager. While previous studies have employed quantitative or qualitative methods to analyze various aspects of fund managers, such as performance metrics, personal characteristics, and performance persistence, they often face challenges when dealing with a large candidate space. Moreover, distinguishing whether a fund manager's performance stems from skill or luck poses a challenge, making it difficult to align with investors' preferences in the selection process. To address these challenges, this study characterizes the requirements of investors in selecting suitable fund managers and proposes an interactive visual analytics system called FMLens. This system streamlines the fund manager selection process, allowing investors to efficiently assess and deconstruct fund managers' investment styles and abilities across multiple dimensions. Additionally, the system empowers investors to scrutinize and compare fund managers' performances. The effectiveness of the approach is demonstrated through two case studies and a qualitative user study. Feedback from domain experts indicates that the system excels in analyzing fund managers from diverse perspectives, enhancing the efficiency of fund manager evaluation and selection.

17.
Nano Lett ; 24(18): 5474-5480, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652833

RESUMO

Grain boundaries (GBs) and twin boundaries (TBs) in copper (Cu) are two major planar defects that influence electrical conductivity due to their complex electron transport characteristics, involving electron scattering and electron concentration. Understanding their local electronic states is crucial for the design of future conductor materials. In this study, we characterized electron behaviors at TBs and GBs within one Cu grain using atomic force microscopy. Our findings revealed that, compared with GBs, TBs exhibit better current transport capability (direct-current mode) and larger electromagnetic loss (high-frequency microwave mode). Both kelvin probe force microscopy and theoretical analysis suggested that TBs with smaller lattice disorder possess lower density of states at the Fermi level. The reduced density of states may result in decreased electron scattering and a lower electron concentration at TBs. The latter can be highlighted by the high-frequency skinning effect, manifested as larger electromagnetic loss and weaker high-frequency conductivity.

18.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602041

RESUMO

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Assuntos
Biopolímeros , Cápsulas , Carotenoides , Helianthus , Terapia Fototérmica , Pólen , Animais , Camundongos , Helianthus/química , Pólen/química , Cápsulas/química , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Raios Infravermelhos
19.
Front Microbiol ; 15: 1372866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525071

RESUMO

Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.

20.
Zookeys ; 1195: 139-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525353

RESUMO

Himalayan shrews of the genus Soriculus (Soricidae, Eulipotyphla), currently represented by four nominal species, are endemic to the Himalayas and the Gaoligong Mountains. In April 2022 and April 2023, a total of 10 specimens of Soriculus were collected from Beibeng and Damu, Medog County, Tibet, China. The morphology of the specimens was compared with the four recognised species of the genus Soriculus. Additionally, two mitochondrial (Cyt b and 12S) and three nuclear (APOB, BRCAI and RAG2) genes were sequenced to test the phylogenetic relationships of these specimens with the other species. Our results indicate that these specimens represent a distinct species, Soriculusbeibengensissp. nov., which is formally described here. The new species is distinguished from the other Soriculus species by the combination of darker pelages, smaller size, the relatively stubby nasal and the widened posterior processes of incisors. Phylogenetic analyses revealed the new species is sister to S.minor. The p-distance of Cyt b gene between S.beibengensis sp. nov. and other nominal Soriculus species ranges from 9.1-16.3%. This new species has a known distribution at an elevation of 1,500-2,125 m in Medog County, Tibet, China. The discovery of this new species from Medog County has important implications for interpreting small mammal biogeographic patterns in the eastern Himalaya and the mountain chains of south-west China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA