Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611556

RESUMO

Chili pepper (Capsicum annuum L.) is extensively cultivated in China, with its production highly reliant on regional environmental conditions. Given ongoing climate change, it is imperative to assess its impact on chili pepper cultivation and identify suitable habitats for future cultivation. In this study, the MaxEnt model was optimized and utilized to predict suitable habitats for open-field chili pepper cultivation, and changes in these habitats were analyzed using ArcGIS v10.8. Our results showed that the parameter settings of the optimal model were FC = LQPTH and RM = 2.7, and the critical environmental variables influencing chili pepper distribution were annual mean temperature, isothermality, maximum temperature of the warmest month, and precipitation of the warmest quarter. Under current climate conditions, suitable habitats were distributed across all provinces in China, with moderately- and highly-suitable habitats concentrated in the east of the Qinghai-Tibetan Plateau and south of the Inner Mongolia Plateau. Under future climate scenarios, the area of suitable habitats was expected to be larger than the current ones, except for SSP126-2050s, and reached the maximum under SSP126-2090s. The overlapping suitable habitats were concentrated in the east of the Qinghai-Tibetan Plateau and south of the Inner Mongolia Plateau under various climate scenarios. In the 2050s, the centroids of suitable habitats were predicted to shift towards the southwest, except for SSP126, whereas this trend was reversed in the 2090s. Our results suggest that climate warming is conductive to the cultivation of chili pepper, and provide scientific guidance for the introduction and cultivation of chili pepper in the face of climate warming.

2.
Front Plant Sci ; 15: 1372477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638349

RESUMO

Introduction: Seed coat color is a significant agronomic trait in horticultural crops such as Brassica rapa which is characterized by brown or yellow seed coat coloration. Previous Brassica rapa studies have shown that BrTTG1 is responsible for seed coat proanthocyanidin formation, which is dependent on the MYB-bHLH-WD40 complex, whereas some studies have reported that TRANSPARENT TESTA GLABRA 1 (TTG1) directly interacts with the structural gene promoters of the flavonoid pathway. Methods: Herein, the brown-seeded inbred B147 and ttg1 yellow-seeded inbred B80 mutants were used as plant materials for gene expression level analysis, gene promoter clone and transient overexpression. Results: The analysis identified eleven structural genes involved in the flavonoid biosynthesis pathway, which are potentially responsible for BrTTG1- dependent seed coat proanthocyanidin formation. The promoters of these genes were cloned and cis-acting elements were identified. Yeast one-hybrid and dual-luciferase assays confirmed that BrTTG1 directly and independently interacted with proCHS-Bra008792, proDFR-Bra027457, proTT12-Bra003361, proTT19-Bra008570, proTT19-Bra023602 and proAHA10-Bra016610. A TTG1-binding motif (RTWWGTRGM) was also identified. Overexpression of TTG1 in the yellow-seed B. rapa inbred induced proanthocyanidin accumulation by increasing the expression levels of related genes. Discussion: Our study unveiled, for the first time, the direct interaction between TTG1 and the promoters of the flavonoid biosynthesis pathway structural genes and glutathione S-transferases in Brassica rapa. Additionally, we have identified a novel TTG1-binding motif, providing a basis for further exploration into the function of TTG1 and the accumulation of proanthocyanidins in seed coats.

4.
Genes (Basel) ; 15(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540374

RESUMO

The formation of fruit color in pepper is closely related to the processes of carotenoid metabolism. In this study, red wild-type pepper XHB, SP01, PC01 and their corresponding mutants H0809 (orange), SP02 (yellow), and PC02 (orange) were used as research materials. The Ggps, Psy, Lcyb, Crtz, Zep, and Ccs genes involved in carotenoid biosynthesis were cloned, and bioinformatics and expression analyses were carried out. The results showed that the full lengths of the six genes were 1110 bp, 2844 bp, 1497 bp, 2025 bp, 510 bp, and 1497 bp, and they encoded 369, 419, 498, 315, 169, and 498 amino acids, respectively. Except for the full-length Ccs gene, which could not be amplified in the yellow mutant SP02 and the orange mutant PC02, the complete full-length sequences of the other genes could be amplified in different materials, indicating that the formation of fruit color in the SP02 and PC02 mutants could be closely related to the deletion or mutation of the Ccs gene. The analytical results of real-time quantitative reverse transcription PCR (qRT-PCR) showed that the Ggps, Psy, Lcyb, Crtz, and Zep genes were expressed at different developmental stages of three pairs of mature-fruit-colored materials, but their patterns of expression were not consistent. The orange mutant H0809 could be amplified to the full Ccs gene sequence, but its expression was maintained at a lower level. It showed a significant difference in expression compared with the wild-type XHB, indicating that the formation of orange mutant H0809 fruit color could be closely related to the different regulatory pattern of Ccs expression. The results provide a theoretical basis for in-depth understanding of the molecular regulatory mechanism of the formation of color in pepper fruit.


Assuntos
Capsicum , Frutas , Frutas/metabolismo , Capsicum/genética , Carotenoides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Clonagem Molecular
5.
BMC Public Health ; 23(1): 1463, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525147

RESUMO

PURPOSE: The credible data about the burden of early-onset colorectal cancer (EOCRC) in China when compared to other countries in the group of twenty (G20) remained unavailable. We aimed to assess the burden and trends of EOCRC and attributable risk factors in China. Meanwhile, the comparison in the burden and attributable risk factors between China and other G20 countries was also evaluated. METHODS: Data on the incidence, prevalence, mortality, disability-adjusted life years (DALYs), and attributable risk factors of EOCRC in China were obtained from Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 and compared with other G20countries. Temporal trends of age-standardized rates for incidence, prevalence, mortality, and DALYs were evaluated by estimated annual percentage change (EAPC). The autoregressive integrated moving average (ARIMA) model was used to forecast the incidence, mortality, and DALY rates of EOCRC in China from 2020 to 2029. RESULTS: From 1990 to 2019, the age-standardized incidence rate (ASIR) and age-standardized prevalence rate (ASPR) of EOCRC in China increased with the EAPCs of 4.61 [95% confidence interval (CI): 4.45-4.77] and 5.82 (95% CI: 5.60-6.05). When compared to G20 countries, China was ranked 13th in the ASIR in 1990 and then increased to 2nd in 2019, second only to Japan. The ASPRs increased in all G20 countries, being highest in Saudi Arabia, followed by China and Mexico. Moreover, China had the highest age-standardized mortality rate and highest age-standardized DALY rate in 2019. In China, the five leading risk factors, for both sexes, were diet low in milk [18.54% (95% UI: 12.71-24.07)], diet low in calcium [15.06% (95% UI: 10.70-20.03)], alcohol use [12.16% (95% UI: 8.87-15.64)], smoking [9.08% (95% UI: 3.39-14.11)], and diet high in red meat [9.08% (95% UI: 3.39-14.11)] in 2019. Over the next 10 years, ASIR, ASMR, and age-standardized DALY rate of EOCRC will increase continuously in males and females. CONCLUSION: The burden of EOCRC in China and other G20 countries is worrisome, indicating that coordinated efforts are needed to conduct high-quality researches, allocate medical resources, adjust screening guidelines, and develop effective treatment and prevention strategies in the G20 countries.


Assuntos
Neoplasias Colorretais , Carga Global da Doença , Masculino , Feminino , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco , China/epidemiologia , Neoplasias Colorretais/epidemiologia , Saúde Global , Incidência
6.
Cell Death Dis ; 14(4): 264, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041150

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. The Hippo signaling pathway has emerged as a significant suppressive pathway for hepatocellular carcinogenesis. The core components of the Hippo pathway constitute a kinase cascade, which inhibits the functional activation of YAP/TAZ. Interestingly, the overactivation of YAP/TAZ is commonly observed in hepatocellular carcinoma, although the inhibitory kinase cascade of the Hippo pathway is still functional. Recent studies have indicated that the ubiquitin‒proteasome system also plays important roles in modulating Hippo signaling activity. Our DUB (deubiquitinase) siRNA screen showed that USP1 is a critical regulator of Hippo signaling activity. Analysis of TCGA data demonstrated that USP1 expression is elevated in HCC and associated with poor survival in HCC patients. RNA sequencing analysis revealed that USP1 depletion affects Hippo signaling activity in HCC cell lines. Mechanistic assays revealed that USP1 is required for Hippo/TAZ axis activity and HCC progression. USP1 interacted with the WW domain of TAZ, which subsequently enhanced TAZ stability by suppressing K11-linked polyubiquitination of TAZ. Our study identifies a novel mechanism linking USP1 and TAZ in regulating the Hippo pathway and one possible therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Neoplasias Hepáticas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteases Específicas de Ubiquitina/metabolismo
7.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676587

RESUMO

The flow pattern is vital for the metallurgical performance of continuous casting tundishes. The purpose of this study was to design and optimize the flow characteristics inside a four-strand tundish. Numerical simulations and water model experiments were validated and utilized to investigate the flow behavior. The effect of different flow rates in the original tundish was evaluated; two modified retaining walls and a new ladle shroud were designed for optimization. The molten steel inside the original tundish tends to be more active as the flow rate increases from 3.8 L/min to 6.2 L/min, which results in a reduction in dead volume from 36.47% to 17.59% and better consistency between different outlets. The dead volume and outlet consistency inside the tundish are improved significantly when the modified walls are applied. The proper design of the diversion hole further enhances the plug volume from 6.39% to 13.44% of the tundish by forming an upstream circular flow in the casting zone. In addition, the new trumpet ladle shroud demonstrates an advantage in increasing the response time from 152.5 s to 167.5 s and alleviating the turbulence in the pouring zone, which is beneficial for clean steel production.

8.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615581

RESUMO

In this study, Co-doped TiO2 was synthesized using waste tobacco stem silk (TSS) as a template via a one-pot impregnation method. These samples were characterized using various physicochemical techniques such as N2 adsorption/desorption analysis, diffuse reflectance UV-visible spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and electron paramagnetic resonance spectroscopy. The synthesized material was used for the photodegradation of tetracycline hydrochloride (TCH) under visible light (420-800 nm). No strong photodegradation activity was observed for mesoporous TiO2 synthesized using waste TSS as a template, mesoporous Co-doped TiO2, or TiO2. In contrast, Co-doped mesoporous TiO2 synthesized using waste TSS as a template exhibited significant photocatalytic degradation, with 86% removal of TCH. Moreover, owing to the unique chemical structure of Ti-O-Co, the energy gap of TiO2 decreased. The edge of the absorption band was redshifted, such that the photoexcitation energy for generating electron-hole pairs decreased. The electron-hole separation efficiency improved, rendering the microstructured biotemplated TiO2 a much more efficient catalyst for the visible-light degradation of TCH.


Assuntos
Nicotiana , Tetraciclina , Luz , Antibacterianos/química , Titânio/química , Catálise
9.
Gastric Cancer ; 26(1): 69-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114400

RESUMO

BACKGROUND: Ubiquitous mitochondrial creatine kinase (uMtCK) transfers high-energy phosphates from mitochondrially generated ATP to creatine to generate phosphocreatine. uMtCK overexpression has been reported in several malignant tumors, however, the clinical significance and impact of uMtCK in gastric cancer (GC) has not been comprehensively studied. METHODS: We first examined uMtCK expression in GC by quantitative real-time PCR and western blot assays. Then the clinicopathological significance of aberrant uMtCK expression was determined by immunohistochemical staining in a GC tissue microarray. Kaplan-Meier analysis was used for survival analysis. The biological functions of uMtCK in GC cells were explored by wound-healing, transwell assays and glucose metabolism assays in vitro as well as a liver metastasis model by spleen injection in nude mice in vivo. RESULTS: We verified that the expression of uMtCK was substantially elevated in GC tissues, significantly associating with a poorer prognosis in GC patients, especially for those with advanced stage. In univariate and multivariate analyses, uMtCK expression emerged as an independent prognostic factor for both disease-free survival and overall survival. Functionally, we demonstrated that uMtCK promoted glycolysis in GC cells and facilitated their migration, invasion and liver metastasis in vitro and in vivo. Mechanistically, uMtCK enhanced GC progression in a HK2-dependent glycolysis via acting the JNK-MAPK/JUN signaling pathway. CONCLUSIONS: uMtCK could serve as a novel independent prognostic biomarker as well as potential therapeutic target for GC patients, particularly for GC patients with an advanced UICC stage and tumor recurrence.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Camundongos , Animais , Humanos , Neoplasias Gástricas/patologia , Creatina Quinase Mitocondrial/metabolismo , Camundongos Nus , Glicólise , Proliferação de Células , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
10.
Med Oncol ; 39(8): 111, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666346

RESUMO

The ubiquitination process, which involves that binding of an ubiquitin protein to certain substrates, regulates several human biological processes and human cancers. Several studies report that the abnormal expression of quite a few E3 ubiquitin ligases could play critical role in carcinogenic process and cancer progression. In our current study, we identify UHRF1 (Ubiquitin Like with PHD And Ring Finger Domain 1) is an important regulator for breast cancer growth. UHRF1 depletion significantly decreases breast cancer growth in vitro and in vivo. Clinical data analysis reveals that UHRF1 is dramatically elevated in breast cancer, compared to normal breast tissue. UHRF1 correlates with poor survival in luminal type of breast cancer patients, but not in ER-negative groups. The molecular biological studies show that UHRF1 localizes in the nuclear and interact with ERα via its SRA domain, which subsequently inhibits K48-linked ubiquitination of ERα and enhances ERα stability. Our study provides a novel function of UHRF1 in regulation estrogen signaling in breast cancer and a promising target for breast cancer therapeutics.


Assuntos
Fenômenos Biológicos , Neoplasias da Mama , Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transformação Celular Neoplásica , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Humanos , Ubiquitina-Proteína Ligases , Ubiquitinas
11.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171626

RESUMO

Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.


Assuntos
Capsicum/genética , Capsicum/fisiologia , Genes de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Antioxidantes/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Filogenia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo , Ativação Transcricional
12.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927746

RESUMO

Anthracnose caused by Colletotrichum acutatum is one of the most devastating fungal diseases of pepper (Capsicum annuum L.). The utilization of chitin-binding proteins or chitinase genes is the best option to control this disease. A chitin-binding domain (CBD) has been shown to be crucial for the innate immunity of plants and activates the hypersensitive response (HR). The CaChiIII7 chitinase gene has been identified and isolated from pepper plants. CaChiIII7 has repeated CBDs that encode a chitinase enzyme that is transcriptionally stimulated by C. acutatum infection. The knockdown of CaChiIII7 in pepper plants confers increased hypersensitivity to C. acutatum, resulting in its proliferation in infected leaves and an attenuation of the defense response genes CaPR1, CaPR5, and SAR8.2 in the CaChiIII7-silenced pepper plants. Additionally, H2O2 accumulation, conductivity, proline biosynthesis, and root activity were distinctly reduced in CaChiIII7-silenced plants. Subcellular localization analyses indicated that the CaChiIII7 protein is located in the plasma membrane and cytoplasm of plant cells. The transient expression of CaChiIII7 increases the basal resistance to C. acutatum by significantly expressing several defense response genes and the HR in pepper leaves, accompanied by an induction of H2O2 biosynthesis. These findings demonstrate that CaChiIII7 plays a prominent role in plant defense in response to pathogen infection.


Assuntos
Capsicum/genética , Quitinases/genética , Colletotrichum/fisiologia , Interações Hospedeiro-Patógeno , Capsicum/enzimologia , Capsicum/microbiologia , Quitinases/química , Quitinases/metabolismo , Resistência à Doença
13.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784662

RESUMO

Plants need to cope with multitudes of stimuli throughout their lifecycles in their complex environments. Calcium acts as a ubiquitous secondary messenger in response to numerous stresses and developmental processes in plants. The major Ca2+ sensors, calcineurin B-like proteins (CBLs), interact with CBL-interacting protein kinases (CIPKs) to form a CBL-CIPK signaling network, which functions as a key component in the regulation of multiple stimuli or signals in plants. In this review, we describe the conserved structure of CBLs and CIPKs, characterize the features of classification and localization, draw conclusions about the currently known mechanisms, with a focus on novel findings in response to multiple stresses, and summarize the physiological functions of the CBL-CIPK network. Moreover, based on the gradually clarified mechanisms of the CBL-CIPK complex, we discuss the present limitations and potential prospects for future research. These aspects may provide a deeper understanding and functional characterization of the CBL-CIPK pathway and other signaling pathways under different stresses, which could promote crop yield improvement via biotechnological intervention.


Assuntos
Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Sequência de Aminoácidos , Modelos Biológicos , Filogenia , Proteínas de Plantas/metabolismo , Plantas/química
14.
Front Plant Sci ; 11: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174937

RESUMO

The basic leucine zipper (bZIP) proteins compose a family of transcription factors (TFs), which play a crucial role in plant growth, development, and abiotic and biotic stress responses. However, no comprehensive analysis of bZIP family has been reported in pepper (Capsicum annuum L.). In this study, we identified and characterized 60 bZIP TF-encoding genes from two pepper genomes. These genes were divided into 10 groups based on their phylogenetic relationships with bZIP genes from Arabidopsis. Six introns/exons structural patterns within the basic and hinge regions and the conserved motifs were identified among all the pepper bZIP proteins, on the basis of which, we classify them into different subfamilies. Based on the transcriptomic data of Zunla-1 genome, expression analyses of 59 pepper bZIP genes (not including CabZIP25 of CM334 genome), indicated that the pepper bZIP genes were differentially expressed in the pepper tissues and developmental stages, and many of the pepper bZIP genes might be involved in responses to various abiotic stresses and phytohormones. Further, gene expression analysis, using quantitative real-time PCR (qRT-PCR), showed that the CabZIP25 gene was expressed at relatively higher levels in vegetative tissues, and was strongly induced by abiotic stresses and phytohormones. In comparing with wild type Arabidopsis, germination rate, fresh weight, chlorophyll content, and root lengths increased in the CabZIP25-overexpressing Arabidopsis under salt stress. Additionally, CabZIP25-silenced pepper showed lower chlorophyll content than the control plants under salt stress. These results suggested that CabZIP25 improved salt tolerance in plants. Taken together, our results provide new opportunities for the functional characterization of bZIP TFs in pepper.

15.
Food Nutr Res ; 642020.
Artigo em Inglês | MEDLINE | ID: mdl-33447178

RESUMO

BACKGROUND: Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS: To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS: Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION: Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.

16.
Arch Microbiol ; 202(3): 525-538, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31712862

RESUMO

Seasonal temperature-fluctuation has been regarded as a key environmental factor affecting rural biogas fermentation yields. The present study investigated the impact of seasonal temperature-fluctuation on operating-temperatures and biogas production in rural household digesters at Qinghai Plateau and revealed the related changes in microbial diversity and community structure by 16S rRNA gene high-throughput sequencing (HTS) analysis. Our results showed closely positive correlation between operating-temperatures and biogas production. HTS analysis indicated the highest diversity for bacteria community in autumn (at highest operating-temperatures) and late winter (at lowest operating-temperatures) and for archaea community only in autumn. HTS analysis classified bacteria into 21 phyla and 346 genera with the most predominant phyla Firmicutes, Bacteroidetes and Proteobacteria (> 72.4% in total) and the most predominant genera Proteiniphilum, Clostridium sensustricto 1, Petrimonas, Pseudomonas and Fastidiosipila (37.09-38.61% in total). HTS analysis also revealed two main archaea orders (Methanomicrobiales and Methanobacteriales) and one predominant genus Methanogenium to support plateau biogas fermentation. Especially, a remarkable impact of temperature on the community abundances of bacteria phyla Synergistetes and archaea genera Methanogenium and Thermogymnomonas was observed, and such microbial community structure changes were positively consistent with the biogas production. The present work provided the first set of evidences to link temperature-controlled modulation of microbial community structure with rural household biogas production at Qinghai Plateau.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Gases/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , China , Características da Família , Fermentação , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Temperatura
17.
J Biochem Mol Toxicol ; 33(12): e22411, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621980

RESUMO

To date, microRNA-4709 (miR-4709) has not been studied in colon adenocarcinoma (COAD) on the basis of experiments. In our study, we aimed to investigate the biological roles and clinical significance of miR-4709 in COAD. The expression difference between miR-4709 and NR3C2 was measured based on The Cancer Genome Atlas database and cells. Kaplan-Meier and logrank tests were applied to determine the overall survival (OS) differences according to the miR-4709 and NR3C2 expression levels. To measure whether the miR-4709 level was associated with COAD cell growth, migration, and invasion, we respectively conducted 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and transwell assays. A luciferase reporter assay was applied to confirm the relationship between miR-4709 and its predicted target. High expression of miR-4709 was found in COAD tissues and cells. The OS rate in the miR-4709 low expression group was significantly higher than that in the miR-4709 high expression group. Univariate and multivariate analyses exhibited that miR-4709 expression was an independent adverse prognostic factor. Exogenous miR-4709 overexpression promoted proliferation, migration, and invasion of LOVO and SW480 cells. Bioinformatics analysis and luciferase assay demonstrated that miR-4709 directly binds to the 3'-untranslated region of NR3C2. NR3C2 was lowly expressed in COAD and high expression of NR3C2 had a better prognosis compared with that in the low expression of NR3C2. Correlation analysis showed that there is a close association between the level of expression of NR3C2 and miR-4709. Accordingly, miR-4709 may function as an oncogene in COAD and provide a preclinical proof for candidate management to target new miR-4709-NR3C2 signaling for COAD therapy.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , MicroRNAs/metabolismo , Receptores de Mineralocorticoides/metabolismo , Regiões 3' não Traduzidas , Adenocarcinoma/metabolismo , Antagomirs , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Regulação para Baixo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Oncogenes , Prognóstico , Taxa de Sobrevida , Transfecção
18.
BMC Genomics ; 20(1): 775, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653202

RESUMO

BACKGROUND: Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. RESULTS: In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. CONCLUSIONS: Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant's defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.


Assuntos
Capsicum/genética , Capsicum/microbiologia , Phytophthora/fisiologia , Proteínas de Plantas/genética , Capsicum/efeitos dos fármacos , Capsicum/fisiologia , Cromossomos de Plantas/genética , Duplicação Gênica , Espaço Intracelular/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Transporte Proteico/genética , Análise de Sequência , Estresse Fisiológico/genética
19.
Biosci Biotechnol Biochem ; 83(11): 2075-2081, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31314707

RESUMO

The aim of the current study was to investigate and discuss the function of ANKRD33 gene in the pathogenesis of gastric adenocarcinoma. The marked up-regulated expression of ANKRD33 gene in gastric adenocarcinoma tissues compared to normal tissues was found by bioinformatics analysis. Kaplan-Meier analysis revealed that high expression of ANKRD33 is correlated with lower overall survival of gastric adenocarcinoma patients. The results of qPCR revealed that mRNA expression level of ANKRD33 was dramatically higher in AGS, SGC7901, and BGC823 cell lines than that in the GES1 cells. Knockdown of ANKRD33 remarkably inhibited the viability, invasion, and migration of AGS and BGC823 cells. Furthermore, the ratio of p-AKT/AKT and p-mTOR/mTOR was significantly decreased in AGS cells which transfected with si- ANKRD33. All the above results illustrated that ANKRD33 would act as a tumor forwarder in gastric adenocarcinoma development and have a high potential to be a marker molecule in the diagnosis and treatment of gastric tumors.


Assuntos
Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Repressoras/deficiência , Transdução de Sinais/genética , Neoplasias Gástricas/patologia
20.
Curr Microbiol ; 75(5): 541-549, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29234881

RESUMO

To investigate contribution of environmental factor(s) to microbial community structure(s) involved in rural household biogas fermentation at Qinghai Plateau, we collected slurry samples from 15 digesters, with low-temperature working conditions (11.1-15.7 °C) and evenly distributed at three counties (Datong, Huangyuan, and Ledu) with cold plateau climate, to perform polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further sequencing. The bacterial communities in the total 15 digesters were classified into 38 genera with Mangroviflexus (12.1%) as the first dominant, and the archaeal communities into ten genera with Methanogenium (38.5%) as the most dominant. For each county, the digesters with higher biogas production, designated as HP digesters, exclusively had 1.6-3.1 °C higher fermentation temperature and the unique bacterial structure composition related, i.e., unclassified Clostridiales for all the HP digesters and unclassified Marinilabiliaceae and Proteiniclasticum for Ledu HP digesters. Regarding archaeal structure composition, Methanogenium exhibited significantly higher abundances at all the HP digesters and Thermogymnomonas was the unique species only identified at Ledu HP digesters with higher-temperature conditions. Redundancy analysis also confirmed the most important contribution of temperature to the microbial community structures investigated. This report emphasized the correlation between temperature and specific microbial community structure(s) that would benefit biogas production of rural household digesters at Qinghai Plateau.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biocombustíveis/análise , Gases/metabolismo , Esgotos/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , China , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA