Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(7): 4734-4741, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318611

RESUMO

A series of hierarchical mordenite (MOR) catalysts were synthesized by adding soft templates via the solvent-free method. The influence of different kinds of soft templates on the structure, morphology and acid sites of mordenite were systematically characterized. The characterization results revealed that the addition of soft templates could successfully introduce hierarchical structure into the system while maintaining good crystallinity. The specific surface area and pore volume became larger. Surfactants could also affect the amount and distribution of acid sites, which in turn would affect the dimethyl ether carbonylation activity. Compared with cationic and nonionic surfactants, the addition of anionic surfactants such as sodium dodecyl benzene sulfonate could result in more Al species to preferentially enter into the 8 member ring, thus enhancing the amount of active sites for the carbonylation reaction while weakening the strength. Meanwhile, the addition of sodium dodecyl benzene sulfonate could also reduce the number of strong acid sites in the 12 member ring and obviously improve the carbonylation performance.

2.
iScience ; 13: 269-276, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30870784

RESUMO

Non-oxidative propane dehydrogenation (PDH) is an attractive reaction from both an industrial and a scientific viewpoint because it allows direct large-scale production of propene and fundamental analysis of C-H activation respectively. The main challenges are related to achieving high activity, selectivity, and on-stream stability of environment-friendly and cost-efficient catalysts without non-noble metals. Here, we describe an approach for the preparation of supported ultrasmall ZnO nanoparticles (2-4 nm, ZnO NPs) for high-temperature applications. The approach consists of encapsulation of NPs into a nitrogen-doped carbon (NC) layer in situ grown from zeolitic imidazolate framework-8 on a Silicalite-1 support. The NC layer was established to control the size of ZnO NPs and to hinder their loss to a large extent at high temperatures. The designed catalysts exhibited high activity, selectivity, and on-stream stability in PDH. Propene selectivity of about 90% at 44.4% propane conversion was achieved at 600°C after nearly 6 h on stream.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA