Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400838, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977412

RESUMO

Ultrasonic irradiation holds potential for the selective oxidation of non-volatile organic substrates in the aqueous phase by harnessing hydroxyl radicals as chemical initiators. Here, a mechanistic description of hydroxyl radical-initiated glyoxal oxidation is constructed by gleaning insights from photolysis and radiation chemistry to explain the yields and kinetic trends for oxidation products. The mechanistic description and kinetic measurements reported herein reveal that increasing the formation rate of hydroxyl radicals by changing the ultrasound frequency increases both the rates of glyoxal consumption and the selectivity towards C2 acid products over those from C-C cleavage. Glyoxal consumption also occurs more rapidly and with greater selectivity towards C2 acids under acidic conditions, which favor the protonation of carboxylate intermediates into their less reactive acidic forms. Leveraging such pH and frequency effects is crucial to mitigating product degradation by secondary reactions with hydroxyl radicals and oxidation products (specifically hydrogen peroxide and superoxide). These findings demonstrate the potential of ultrasound as a driver for the selective oxidation of aldehyde functions to carboxylic acids, offering a sustainable route for valorizing biomass-derived platform molecules.

2.
ACS Appl Mater Interfaces ; 16(9): 11914-11929, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383343

RESUMO

Conductive hydrogels have shown promising application prospects in the field of flexible sensors, but they often suffer from poor mechanical properties, low sensitivity, and lack of frost resistance. Herein, we report a tough, highly sensitive, and antifreeze strain sensor assembled from a conductive organohydrogel composed of a dual-cross-linked polyacrylamide and poly(vinyl alcohol) (PVA) network, as well as MXene nanosheets as nanofillers and poly(3,4-ethylenedioxythiophene)-doped poly(styrenesulfonate) (PEDOT/PSS) as the main conducting component (PPMP-OH organohydrogel). The tensile strength and toughness of PPMP-OH had been greatly enhanced by MXene nanosheets due to the mechanical reinforcement of MXene nanosheets, as well as various strong noncovalent interactions formed in the organohydrogels. The PPM1P-OH organohydrogels showed a tensile strength of 1.48 MPa at 772% and a toughness of 5.59 MJ/m3. Moreover, the conductivity and strain-sensing performance of PPMP-OH were significantly improved by PEDOT/PSS, which can form hydrogen bonds with PVA and electrostatic interactions with MXene. This was greatly beneficial for constructing a uniformly distributed and stable 3D conductive network and helped to obtain strain-dependent resistance of PPMP-OH. The strain sensors assembled from PPMP1-OH exhibited a high sensitivity of 5.16, a wide range of detectable strains up to 500%, and a short response time of 122 ms, which can effectively detect various physiological activities of the human body with high stability. In addition, the corresponding pressure sensor array also showed high sensitivity in identifying pressure magnitude and position.

3.
ACS Omega ; 8(41): 38481-38493, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867710

RESUMO

The excessive use of antibiotics and consequent bacterial resistance have emerged as crucial public safety challenges for humanity. As a promising antibacterial treatment, using reactive oxygen species (ROS) can effectively address this problem and has the advantages of being highly efficient and having low toxicity. Herein, electrospinning and electrospraying were employed to fabricate magnesium oxide (MgO)-based nanoparticle composited polycaprolactone (PCL) nanofibrous dressings for the chemodynamic treatment of bacteria-infected wounds. By utilizing electrospraying, erythrocyte-like monoporous PCL microspheres incorporating silver (Ag)- and copper (Cu)-doped MgO nanoparticles were generated, and the unique microsphere-filament structure enabled efficient anchoring on nanofibers. The composite dressings produced high levels of ROS, as confirmed by the 2,7-dichloriflurescin fluorescent probe. The sustained generation of ROS resulted in efficient glutathione oxidation and a remarkable bacterial killing rate of approximately 99% against Staphylococcus aureus (S. aureus). These dressings were found to be effective at treating externally infected wounds. The unique properties of these composite nanofibrous dressings suggest great potential for their use in the medical treatment of bacteria-infected injuries.

4.
ACS Nano ; 17(21): 21134-21152, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902237

RESUMO

Catalytic tumor therapy based on two-dimensional (2D) nanomaterials is a burgeoning and promising tumor therapeutic modality. However, the inefficient utilization and conversion of exogenous stimulation, single catalytic modality, and unsatisfactory therapeutic efficiency in the tumor microenvironment (TME) have seriously restricted their further application in tumor therapy. Herein, the heterogeneous carbon nitride-based nanoagent named T-HCN@CuMS was successfully developed, which dramatically improved the efficiency of the tumor therapeutic modality. Benefiting from the donor-acceptor (triazine-heptazine) structure within the heterogeneous carbon nitride nanosheets (HCN) and the construction of interplanar heterostructure with copper loaded metallic molybdenum bisulfide nanosheets (CuMS), T-HCN@CuMS presented a favorable photo-induced catalytic property to generate abundant reactive oxygen species (ROS) under near-infrared (NIR) light irradiation. Besides, the choice of CuMS simultaneously enabled this nanoagent to efficiently catalyze the Fenton-like reaction and trigger cell cuproptosis, a recently recognized regulated cell death mode characterized by imbalanced intracellular copper homeostasis and aggregation of lipoylated mitochondrial proteins. Moreover, upon surface modification with cRGDfk-PEG2k-DSPE, T-HCN@CuMS was prepared and endowed with improved dispersibility and αvß3 integrins targeting ability. In general, through the rational design, T-HCN@CuMS was facilely prepared and had achieved satisfactory antitumor and antimetastasis outcomes both in vitro and in a high-metastatic orthotopic osteosarcoma model. This strategy could offer an idea to treat malignant diseases based on 2D nanomaterials.


Assuntos
Neoplasias Ósseas , Neoplasias , Nitrilas , Osteossarcoma , Humanos , Cobre/química , Estresse Oxidativo , Neoplasias/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
5.
ACS Appl Mater Interfaces ; 15(28): 34108-34119, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37429826

RESUMO

Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.

6.
Carbohydr Polym ; 315: 120953, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230609

RESUMO

Conductive hydrogels have attracted widespread attention because of their integrated characteristics of being stretchable, deformable, adhesive, self-healable, and conductive. Herein, we report a highly conductive and tough double-network hydrogel based on a double cross-linked polyacrylamide (PAAM) and sodium alginate (SA) network with conducting polypyrrole nanospheres (PPy NSs) uniformly distributed in the network (PAAM-SA-PPy NSs). SA was employed as a soft template for synthesis of PPy NSs and distribution of PPy NSs uniformly in the hydrogel matrix to construct SA-PPy conductive network. The PAAM-SA-PPy NS hydrogel exhibited both high electrical conductivity (6.44 S/m) and excellent mechanical properties (tensile strength of 560 kPa at 870 %), as along as high toughness, high biocompatibility, good self-healing and adhesion properties. The assembled strain sensors showed high sensitivity and a wide sensing range (a gauge factor of 1.89 for 0-400 % strain and 4.53 for 400-800 % strain, respectively), as well as fast responsiveness and reliable stability. When used as a wearable strain sensor, it was able to monitor a series of physical signals from human large-scale joint motions and subtle muscle movements. This work provides a new strategy for the development of electronic skins and flexible strain sensors.


Assuntos
Nanosferas , Humanos , Polímeros , Pirróis , Alginatos , Condutividade Elétrica , Hidrogéis
7.
Small ; 17(51): e2102970, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636132

RESUMO

Lattice strain modulation and vacancy engineering are both effective approaches to control the catalytic properties of heterogeneous catalysts. Here, Co@CoO heterointerface catalysts are prepared via the controlled reduction of CoO nanosheets. The experimental quantifications of lattice strain and oxygen vacancy concentration on CoO, as well as the charge transfer across the Co-CoO interface are all linearly correlated to the catalytic activity toward the aqueous phase reforming of formaldehyde to produce hydrogen. Mechanistic investigations by spectroscopic measurements and density functional theory calculations elucidate the bifunctional nature of the oxygen-vacancy-rich Co-CoO interfaces, where the Co and the CoO sites are responsible for CH bond cleavage and OH activation, respectively. Optimal catalytic activity is achieved by the sample reduced at 350 °C, Co@CoO-350 which exhibits the maximum concentration of Co-CoO interfaces, the maximum concentration of oxygen vacancies, a lattice strain of 5.2% in CoO, and the highest aqueous phase formaldehyde reforming turnover frequency of 50.4 h-1 at room temperature. This work provides not only new insights into the strain-vacancy-activity relationship at bifunctional catalytic interfaces, but also a facile synthetic approach to prepare heterostructures with highly tunable catalytic activities.

8.
Adv Mater ; 33(32): e2101536, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216405

RESUMO

Strong metal-support interaction (SMSI) is a phenomenon commonly observed on heterogeneous catalysts. Here, direct evidence of SMSI between noble metal and 2D TiB2 supports is reported. The temperature-induced TiB2 overlayers encapsulate the metal nanoparticles, resulting in core-shell nanostructures that are sintering-resistant with metal loadings as high as 12.0 wt%. The TiOx -terminated TiB2 surfaces are the active sites catalyzing the dehydrogenation of formic acid at room temperature. In contrast to the trade-off between stability and activity in conventional SMSI, TiB2 -based SMSI promotes catalytic activity and stability simultaneously. By optimizing the thickness and coverage of the overlayer, the Pt/TiB2 catalyst displays an outstanding hydrogen productivity of 13.8 mmol g-1 cat h-1 in 10.0 m aqueous solution without any additive or pH adjustment, with >99.9% selectivity toward CO2 and H2 . Theoretical studies suggest that the TiB2 overlayers are stabilized on different transition metals through an interplay between covalent and electrostatic interactions. Furthermore, the computationally determined trends in metal-TiB2 interactions are fully consistent with the experimental observations regarding the extent of SMSI on different transition metals. The present research introduces a new means to create thermally stable and catalytically active metal/support interfaces for scalable chemical and energy applications.

9.
ACS Appl Mater Interfaces ; 11(37): 33946-33954, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31462039

RESUMO

Efficient molecular hydrogen generation from renewable biomass-derived resources and water is of great importance to the sustainable development of the future society. Herein, ultrasmall Ag nanoclusters supported on a defect-rich MgO matrix (AgUCs/MgO) are synthesized by a facile impregnation/calcination method and are applied to robust oxygen-promoted formaldehyde reforming into H2 at room temperature. Density functional theory calculations and experimental observations show that the catalyst spatially builds up a channel for directional electron transfer from electron-rich Ag sites to the anti-bonding π orbital of chemisorbed bridged O2 molecules, leading to the implementation of low-temperature O2 adsorption and activation. The catalytically active species, •OOH, is thus selectively generated via a preferential two-electron reduction of O2 with a low energy barrier on Ag sites, involving an unusual long-range proton-coupled electron transfer process. The •OOH-AgUCs/MgO active center is efficient for the subsequent C-H activation and H2 generation, leading to a 3-fold improvement of the turnover frequency as compared with its analogous AgNPs/MgO catalyst. Our atomic-level design and synthetic strategy provide a platform that facilitates the construction of an electron-proton transfer channel for catalysis, altered adsorption configurations of activated reactants, and enhancement of catalytic hydrogen generation activity, extending a promising direction for the development of next-generation energy catalysts.

10.
Chem Commun (Camb) ; 52(61): 9566-9, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27387132

RESUMO

Herein, we report that persistent free radicals (PFRs) based on MWCNTs significantly accelerate the pollutant removal rate. EPR measurement combined with the electrochemical test indicated that a nonradical mechanism was responsible for the enhancement, which is different from the previously reported radical pathway on PFRs.

11.
J Hazard Mater ; 303: 1-9, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26513558

RESUMO

A new mesoporous silica protected plasmonic photocatalyst, Au/BiOCl@mSiO2, was prepared by a modified AcHE method and a subsequent UV light induced photodeposition process. The surfactant-free heterojunction allows the electrons spontaneously flow from Au to nearby BiOCl surface, leading to the accumulation of positive charges on Au surface, and negative charges on Bi species under visible light. Au/BiOCl@mSiO2 exhibits high visible light photocatalytic efficiency in complete oxidation of aqueous formaldehyde and Rhodamin B. We showed that a positive relationship exists between the LSPR effect and rate enhancements, and leads to a hypothesis that the metallic Au LSPR enhances the photocatalytic rates on nearby semiconductors by transferring energetic electrons to BiOCl and increasing the steady-state concentration of active OH species by a multi-electron reduction of molecular oxygen. The OH species is the main oxidant in photocatalytic transformations, whose intensity is greatly enhanced in the dye-involving systems due to the synergetic effect between LSPR and dye sensitization processes. In addition, the mesoporous SiO2 shell not only inhibits the over growth of BiOCl nanocrystals within the silica frameworks, but also protects the dissolution of chloride or Au species into aqueous solution, which ultimately makes the Au/BiOCl@mSiO2 catalysts rather stable during photocatalysis.

12.
J Nanosci Nanotechnol ; 15(9): 7060-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716284

RESUMO

Unprecedentedly high-density (up to 79 wt%) immobilization of monodispersed gold nanoparticles (AuNPs) within mesoporous silica SBA-15 is achieved by variation of their pore size and pore-pore connectivity to enable a full access of AuNPs to the large and high-affinity internal surface of mesoporous silica (MPS) SBA-15. In addition, according to the adsorption kinetics, dipole-induced dipole interaction is suggested to be the primary driving force for adsorption of AuNPs on silica. Interestingly, the high internal surface of MPS shows much higher affinity to AuNPs than the external surface. The optical properties of these densely immobilized AuNPs are also investigated, demonstrating that a plasma coupling exists between closely spaced AuNPs.

13.
Chem Commun (Camb) ; 50(79): 11713-6, 2014 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-25142432

RESUMO

Sub-10 nm AuPtPd alloy trimetallic nanoparticles (TMNPs) with a high oxidation-resistant property were prepared by photo-deposition followed by a high temperature (700-900 °C) air annealing process.

14.
Chem Commun (Camb) ; 50(68): 9679-82, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25015765

RESUMO

Platinum nanoparticles supported on Ca(Mg)-ZSM-5 is an efficient, highly selective and stable catalyst for room-temperature oxidation of alcohols in water. Based on in situ EPR measurement and the radical trapping technique, we propose that the generation of ˙OH radicals by cleavage of the O-O bond in the H2O2 intermediate is the rate determining step, which participated in the abstraction of H from the α-C-H bond of alcohol molecules to produce aldehydes/ketones.

15.
Chem Commun (Camb) ; 50(2): 213-5, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24223424

RESUMO

A solid phase metallurgy strategy is applied to synthesize Au-Pd and Ni-Pd bimetallic nanoparticles (BMNPs) with a tight sub-5 nm particle size distribution. The near-surface elemental composition and redox properties of Au-Pd BMNPs can be well tailored, which leads to an optimized catalytic performance in n-hexane combustion.

16.
Chem Commun (Camb) ; 49(66): 7274-6, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23615685

RESUMO

Ordered, extra-large mesopores with highly loaded gold nanoparticles (AuNPs) exhibits unique sintering- and coking-resistant properties in gas-phase, cyclohexanol selective aerobic oxidation.

17.
Chem Commun (Camb) ; 49(19): 1906-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23282559

RESUMO

It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.


Assuntos
Acetonitrilas/química , Carbono/química , Metais/química , Nitratos/química , Processos Fotoquímicos , Temperatura , Modelos Moleculares , Conformação Molecular
18.
Ying Yong Sheng Tai Xue Bao ; 23(8): 2129-34, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23189689

RESUMO

From January 2008 to January 2009, a field experiment was conducted to investigate the effects of simulated nitrogen (N) deposition (0, 5, 15, and 30 g N x m(-2) x a(-1)) on the soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China. As compared with the control (0 g N x m(-2) x a(-1)), simulated N deposition stimulated the activities of soil hydrolases (beta-fructofuranosidase, cellulase, acid phosphatase, and urease) significantly, but depressed the activities of soil oxidases (polyphenol oxidase and peroxidase). These results suggested that the increased exogenous inorganic N could stimulate soil microbial activity and increase the demands of both B. luminifera and soil microbes for C and P, whereas the depress of soil polyphenol oxidase and peroxidase activities under N addition could inhibit the degradation of litter and promote its accumulation in soil, leading to the increase of soil C storage in the B. luminifera plantation ecosystem.


Assuntos
Betula/crescimento & desenvolvimento , Hidrolases/metabolismo , Nitrogênio/análise , Oxirredutases/metabolismo , Solo/química , Betula/química , Carbono/análise , China , Simulação por Computador , Ecossistema , Peroxidase/metabolismo , Folhas de Planta/química , Chuva/química
19.
J Am Chem Soc ; 134(44): 18286-94, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23061378

RESUMO

We show here the first radical route for the direct photosynthesis of AuCN oligomers with different sizes and shapes, as evidenced by TEM observations, from an Au nanoparticle/benzaldehyde/CH(3)CN ternary system in air under UV-light irradiation. This photochemical route is green, mild, and universal, which makes itself distinguishable from the common cyanidation process. Several elementary reaction steps, including the strong C-C bond dissociation of CH(3)CN and subsequent •CN radical addition to Au, have been suggested to be critical in the formation of AuCN oligomers based on the identification of •CN radical by in situ EPR and the radical trapping technique, and other reaction products by GC-MS and (1)H NMR, and DFT calculations. The resulting solid-state AuCN oligomers exhibit unique spectroscopic characters that may be a result of the shorter Au-Au distances (namely, aurophilicity) and/or special polymer-like structures as compared with gold cyanide derivatives in the aqueous phase. The nanosized AuCN oligomers supported on mesoporous silica showed relatively good catalytic activity on the homogeneous annulation of salicylaldehyde with phenylacetylene to afford isoflavanones employing PBu(3) as the cocatalyst under moderate conditions, which also serves as evidence for the successful production of AuCN oligomers.

20.
Chem Commun (Camb) ; 47(30): 8584-6, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21709863

RESUMO

The surface structure of mesoporous TiO(2) is reconstructed via a visible-light-driven reaction with benzyl alcohol molecules at mild, anaerobic conditions, which substantially extends its visible-light absorption and photocatalytic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA