Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Small ; : e2401970, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770987

RESUMO

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

2.
J Colloid Interface Sci ; 668: 12-24, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669989

RESUMO

The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.


Assuntos
Carvão Vegetal , Ferro , Peróxidos , Piridinas , Piridinas/química , Piridinas/farmacologia , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Ferro/química , Ferro/metabolismo , Peróxidos/química , Peróxidos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nitrogênio/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Propriedades de Superfície
3.
J Hazard Mater ; 471: 134351, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653136

RESUMO

Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.


Assuntos
Antibacterianos , Sulfametoxazol , Antibacterianos/farmacologia , Antibacterianos/química , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Rizosfera , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Microbiota , Biofilmes
4.
PLoS One ; 19(3): e0299273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452128

RESUMO

PURPOSE: This study aims to evaluate the efficacy and satisfaction of using a multi-angle laser device (MLD) for C-arm fluoroscopy to assist novice learners during lumbar spine surgery. METHODS: Forty novice learners were randomly assigned to Group A using an MLD-equipped C-arm or Group B using a traditional C-arm. Both groups performed X-ray fluoroscopy on a lumbar spine model in supine and rotated positions. Time, number of shots, and deviation from the target were compared. A questionnaire was used to assess the learning experience. RESULTS: Group A required less time (13.66 vs. 25.63 min), and fewer shots (15.05 vs. 32.50), and had a smaller deviation (22.9% vs. 61.5%) than Group B (all p<0.05). The questionnaire revealed higher scores in Group A for comfort, efficiency, and knowledge mastery (all p<0.05). CONCLUSION: The MLD significantly improves novice learning of C-arm fluoroscopy during lumbar spine surgery.


Assuntos
Vértebras Lombares , Cirurgia Assistida por Computador , Fluoroscopia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Inquéritos e Questionários , Humanos
5.
Sci Total Environ ; 926: 171658, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490411

RESUMO

Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.

6.
Toxicol Mech Methods ; 34(5): 517-526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38293967

RESUMO

Fine particulate matter (PM2.5) increases the risks of lung cancer. Epigenetics provides a new toxicology mechanism for the adverse health effects of PM2.5. However, the regulating mechanisms of PM2.5 exposure on candidate gene DNA methylation changes in the development of lung cancer remain unclear. Abnormal expression of the glutathione S transferase (GST) gene is associated with cancer. However, the relationship between PM2.5 and DNA methylation-mediated GST gene expression is not well understood. In this study, we performed GST DNA methylation analysis and GST-related gene expression in human A549 cells exposed to PM2.5 (0, 50, 100 µg/mL, from Taiyuan, China) for 24 h (n = 4). We found that PM2.5 may cause DNA oxidative damage to cells and the elevation of GSTP1 promotes cell resistance to reactive oxygen species (ROS). The Kelch-1ike ECH-associated protein l (Keap1)/nuclear factor NF-E2-related factor 2 (Nrf2) pathway activates the GSTP1. The decrease in the DNA methylation level of the GSTP1 gene enhances GSTP1 expression. GST DNA methylation is associated with reduced levels of 5-methylcytosine (5mC), DNA methyltransferase 1 (DNMT1), and histone deacetylases 3 (HDAC3). The GSTM1 was not sensitive to PM2.5 stimulation. Our findings suggest that PM2.5 activates GSTP1 to defend PM2.5-induced ROS and 8-hydroxy-deoxyguanosine (8-OHdG) formation through the Keap1/Nrf2 signaling pathway and GSTP1 DNA methylation.


Assuntos
Metilação de DNA , Glutationa S-Transferase pi , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Material Particulado , Transdução de Sinais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Metilação de DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Células A549 , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
7.
J Environ Sci (China) ; 138: 288-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135396

RESUMO

Fine particulate matter (PM2.5) exposure is associated with cardiovascular disease (CVD) morbidity and mortality. Mitochondria are sensitive targets of PM2.5, and mitochondrial dysfunction is closely related to the occurrence of CVD. The epigenetic mechanism of PM2.5-triggered mitochondrial injury of cardiomyocytes is unclear. This study focused on the miR-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM2.5. Results illustrated that PM2.5 impaired mitochondrial function and caused dynamics homeostasis imbalance. Besides, PM2.5 up-regulated miR-421 and down-regulated SIRT3 gene expression, along with decreasing p-FOXO3a (SIRT3 downstream target gene) and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1. Further, miR-421 inhibitor (miR-421i) and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM2.5 exposure and mediated the expression of SOD2, OPA1 and Drp1, restoring the mitochondrial morphology and function. It suggests that miR-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM2.5 and that miR-421i and resveratrol exert protective effects against PM2.5-incurred cardiotoxicity.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Sirtuína 3 , Ratos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Resveratrol , Material Particulado/toxicidade
8.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517987

RESUMO

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Assuntos
Ecossistema , Pradaria , Humanos , Tibet , Mudança Climática , China
9.
Chemosphere ; 337: 139152, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37290504

RESUMO

Microplastics pollution in environments has become a major concern and it has been proven to have adverse impacts on plants, so there is an urgent to find approaches to alleviate the detrimental effects of microplastics. In our study, we investigated the influence of polystyrene microplastics (PSMPs) on the growth, photosynthesis, and oxidative defense system changes of ryegrass, as well as the behavior of MPs at roots. Then three types of nanomaterials were applied to alleviate the adverse impact of PSMPs on ryegrass, which were nano zero-valent iron (nZVI), carboxymethylcellulose-modified-nZVI (C-nZVI) and sulfidated nZVI (S-nZVI), respectively. Our results suggested that PSMPs had significant toxicity to ryegrass, leading to decrease of shoot weight, shoot length and root length. Three nanomaterials regained the weight of ryegrass to a varying extent and made more PSMPs aggregate near roots. In addition, C-nZVI and S-nZVI facilitated the entrance of PSMPs into the root and promoted the chlorophyll a and chlorophyll b contents in leaves. Analysis of antioxidant enzymes and malondialdehyde content indicated that ryegrass coped well with the internalization of PSMPs, and all three types of nZVI could alleviate PSMPs-stress in ryegrass. This study elaborates the toxicity of MPs on plants and provides a novel insight into the fixing of MPs by plants and nanomaterials in environments, which needs to be further explored in future research.


Assuntos
Ferro , Lolium , Ferro/farmacologia , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/farmacologia , Clorofila A
10.
Sci Total Environ ; 882: 163592, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37087002

RESUMO

Epidemiological and experimental data have associated exposure to fine particulate matter (PM2.5) with various metabolic dysfunctions and diseases, including overweight and type 2 diabetes. Adipose tissue is an energy pool for storing lipids, a necessary regulator of glucose homeostasis, and an active endocrine organ, playing an essential role in developing various related diseases such as diabetes and obesity. However, the molecular mechanisms underlying PM2.5-impaired functions in adipose tissue have rarely been explored. In this work, metabolomics based on liquid chromatography-mass spectrometry was performed to study the adverse impacts of PM2.5 exposure on brown adipose tissue (BAT) and white adipose tissue (WAT) in the diabetic mouse model. We found the effects of PM2.5 exposure by comparing the different metabolites in both adipose tissues of male db/db mice using real-ambient PM2.5 exposure. The results showed that PM2.5 exposure changed the purine metabolism in mice, especially the dramatic increase of xanthine content in both WAT and BAT. These changes led to significant oxidative stress. Then the results from real-time quantitative polymerase chain reaction showed that PM2.5 exposure could cause the production of inflammatory factors in both adipose tissues. Moreover, the increased reactive oxygen species (ROS) promoted triglyceride accumulation in WAT and inhibited its decomposition, causing increased WAT content in db/db mice. In addition, PM2.5 exposure significantly suppressed thermogenesis and affected energy metabolism in the BAT of male db/db mice, which may deteriorate insulin sensitivity and blood glucose regulation. This research demonstrated the impact of PM2.5 on the adipose tissue of male db/db mice, which may be necessary for public health.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Xantina/efeitos adversos , Xantina/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom , Material Particulado/efeitos adversos , Metabolismo Energético , Camundongos Endogâmicos C57BL
11.
Rev Environ Health ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810202

RESUMO

Colorectal cancer (CRC) is the second deadliest cancer worldwide. The impact of fine particulate matter (PM2.5) on many diseases is a global concern, yet its association with CRC is unclear. This study aimed to assess the effect of PM2.5 exposure on CRC. We searched PubMed, Web of Science, and Google Scholar databases for population-based articles published before September 2022, providing risk estimates with 95% confidence intervals (CI). Among 85,743 articles, we identified 10 eligible studies across multiple countries and regions in North America and Asia. We calculated the overall risk, incidence and mortality and performed subgroup analyses according to countries and regions. The results revealed an association between PM2.5 and increased risk of CRC (total risk, 1.19 [95% CI 1.12-1.28]; incidence, OR=1.18 [95% CI 1.09-1.28]; mortality, OR=1.21 [95% CI 1.09-1.35]). The elevated risks of CRC associated with PM2.5 were different across countries and regions, at 1.34 [95% CI 1.20-1.49], 1.00 [95% CI 1.00-1.00], 1.08 [95% CI 1.06-1.10], 1.18 [95% CI 1.07-1.29], 1.01 [95% CI 0.79-1.30], in the United States, China, Taiwan, Thailand, and Hong Kong, respectively. Incidence and mortality risks were higher in North America than those in Asia. In particular, the incidence and mortality were highest in the United States (1.61 [95% CI 1.38-1.89] and 1.29 [95% CI 1.17-1.42], respectively) than those in other countries. This study is the first comprehensive meta-analysis to find a strong association between PM2.5 exposure and increased CRC risk.

12.
Sci Rep ; 13(1): 387, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617577

RESUMO

The purpose of this study was to investigate the association between time restricted feeding (TRF) and different areas of cognitive function in the elderly in Chinese communities. This study consisted of 1353 community-dwelling Chinese older adults aged 60 years and older in Chongming area, Shanghai (563 males; the mean age, 73.38 ± 6.16 years). Mild cognitive impairment (MCI) and six different cognitive domains was assessed by the Chinese-version of Mini Mental State Examination (MMSE). Recording the eating time of each meal through oral inquiry to calculate the time window between the first meal and the last meal of the average day. Participants with an eating time window duration of more than 10 h were then identified, as well as those with eating time restricted to less than 10 h (TRF). Our study found that TRF may be associated with a higher incidence rate of cognitive impairment. TRF only limited the eating time window and did not change the frequency of participants' dietary intake. We used a linear regression model to study the association of TRF with cognitive function. After adjusting for confounding variables, the results showed that TRF was related to MMSE score (P < 0.001), "Orientation to place" (P < 0.001) and "Attention/calculation" (P < 0.001) functions. Among Chinese older community-dwellers, TRF was associated with a higher prevalence of CI and negatively correlated with the "Orientation to place" and "attention/calculation" functions.


Assuntos
Disfunção Cognitiva , Jejum Intermitente , Idoso , Masculino , Humanos , Pessoa de Meia-Idade , População do Leste Asiático , China/epidemiologia , Cognição
13.
Sci Total Environ ; 869: 161855, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708845

RESUMO

As an emerging environmental contaminant, the widespread of antibiotic resistance has caused a series of environmental issues and human health concerns. A load of antibiotic residues induced by agricultural practices have exerted selective pressure to bacterial communities in the soil-plant system, which facilitated the occurrence and dissemination of antibiotic resistance genes (ARGs) through horizontal gene transfer. As a result, the enrichment of ARGs within crops at harvest under the influence of food ingestion could lead to critical concerns of public health. In this review, the prevalence and dissemination of antibiotic resistance in the soil-plant system are highlighted. Moreover, different underlying mechanisms and detection methods for ARGs transfer between the soil environment and plant compartments are summarized and discussed. On the other hand, a wide range of influencing factors for the transfer and distribution of antibiotic resistance within the soil-plant system are also presented and discussed. In response to exposure of antibiotic residues and resistomes, corresponding hazard identification assessments have been summarized, which could provide beneficial guides of the toxicological tolerance for the general population. Finally, further research priorities for detection and management ARGs spread are also suggested.


Assuntos
Genes Bacterianos , Solo , Humanos , Solo/química , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo
14.
Bioresour Technol ; 370: 128497, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535618

RESUMO

Electrolytic manganese residue poses potentially threats to the environment and therefore needs eco-friendly treatment. Composting has been reported to effectively passivate heavy metals and alleviate their ecotoxicity. Observation of the Mn concentration during composting indicated that the mobility of Mn was significantly reduced, with the easily extraction fraction (acid extractable and easily reduction fraction) of Mn in the control pile (pile 1 without Phanerochaete chrysosporium inoculation) and treat pile (pile 2 with Phanerochaete chrysosporium inoculation) decreasing by 17% and 29%, respectively. The inoculation of Phanerochaete chrysosporium prompted the passivation of manganese, prolonged the thermophilic period, and enriched the microbial community structure, which was attributed to the rapid growth and reproduction of thermophilic bacteria. Moreover, Phanerochaete chrysosporium inoculation promoted the effect of pH on the stabilization of Mn, but the opposite contribution of organic matter. This study would provide a new perspective for remediating EMR contaminated soil via composting.


Assuntos
Compostagem , Microbiota , Phanerochaete , Manganês , Solo/química
15.
J Hazard Mater ; 443(Pt A): 130081, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36367472

RESUMO

Currently, microplastic pollution is more serious and complicates the toxic effects of other co-existing pollutants in the environment. However, the effect and mechanism of biodegradable plastics on the growth and metabolism of probiotic remain unclear. This work selected Bacillus amyloliquefaciens as model bacterium for a three-day exposure experiment to probe the issues. The results showed that 100 mg/L polylactic acid microplastics (PLA MPs) (3-4 mm, flake shape) caused oxidative damage to cell membranes, disrupted cell wall composition and inhibited cell growth by 21.2-27.5 %. The toxicity was not simply additive or synergistic effects when PLA MPs (100 mg/L) and copper ions (10 mg/L) coexisted. PLA MPs did not significantly increase the toxicity of copper to bacteria, instead triggered some mechanisms to resist the toxicity of copper. The bacteria formed spores to resist PLA MPs, while the copper ions toxicity was weaken by chelation and efflux. It is worth noting that copper ions instead increased the expression of genes related fengycin and iturin then improving the bacteriostatic activity of the probiotic. This paper deeply analyzes the toxicity mechanism of combined pollution on Bacillus amyloliquefacien, and also provides new perspective for helping to inhibit pathogenic bacteria under biodegradable microplastics and metal stress.


Assuntos
Bacillus amyloliquefaciens , Plásticos Biodegradáveis , Probióticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/toxicidade , Cobre/toxicidade , Poliésteres , Íons , Probióticos/farmacologia , Poluentes Químicos da Água/análise
16.
Front Aging Neurosci ; 14: 900523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118698

RESUMO

Objective: This study explores the gender differences in the prevalence of mild cognitive impairment (MCI) and the correlation between multiple influencing factors. Materials and methods: The sample was comprised of 1325 relatively healthy participants aged ≥ 60 years in a Shanghai community-dwelling (557 males and 768 females). Cognitive function was assessed by Mini-Mental State Examination (MMSE). The Instrumental Activities of Daily Living (IADL) scale was used to assess the activities of daily living. Results: The overall prevalence of MCI was 15.2%, with 10.2% in men and 18.9% in women. In older male subjects, those with higher the Geriatric Depression Scale (GDS) scores [odds ratio (OR) = 1.07, 95% confidence interval (CI) = 1.01-1.14] and hypertension (OR = 2.33, 95% CI = 1.15-4.73) had a higher risk of MCI. female subjects who were illiterate (OR = 2.95, 95% CI = 1.82-4.78), had a farming background (OR = 1.69, 95% CI = 1.05-2.72), and a history of stroke (OR = 1.96, 95% CI = 1.07-3.59) had a higher risk of MCI, but this was not true for males. However, Male subjects who never smoked were less likely to have MCI (OR = 0.22, 95% CI = 0.09-0.54). Additionally, the prevalence of MCI was lower in older women with high grip strength (OR = 0.96, 95% CI = 0.92-0.99) and hyperlipidemia (OR = 0.45, 95% CI = 0.22-0.96). Conclusion: The prevalence of MCI was higher in the population of elderly women compared to men. Moreover, it was found that members with MCI tended to having higher GDS scores, smoking, and hypertension; whereas a history of farming, illiteracy, stroke, grip strength, and hyperlipidemia were correlated with MCI in women.

17.
Chemosphere ; 307(Pt 3): 135873, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35932922

RESUMO

In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.


Assuntos
Poluentes Ambientais , Nanoestruturas , Carvão Vegetal/química , Metais , Esgotos/química , Resíduos Sólidos , Águas Residuárias/química
18.
Sci Total Environ ; 851(Pt 1): 157966, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964740

RESUMO

As it is nearly impossible to reduce PM2.5 concentrations in most cities to safe limits in a short period of time, dietary supplementation presents a promising approach for mitigating the adverse effects of PM2.5 exposure. A cross-sectional study showed that the elderly population of Linfen (PM2.5: 102 µg/m3) exhibited significantly lower serum taurine levels, as well as higher oxidative stress levels and cardiovascular health risks, than the corresponding population in Guangzhou (PM2.5: 39 µg/m3). We conducted a random double-blind study on aged mice that employed a "real-world" PM2.5 exposure system to simulate the conditions of Linfen with the aim of investigating the protective effects of taurine and fish oil supplementation on PM2.5-induced heart dysfunction. When compared with the placebo group, supplementation with taurine and fish oil not only maintained normal taurine levels, but also suppressed oxidative stress and inflammation in aged mice subjected to high concentrations of PM2.5. Variations in heart rate, contractile function, cardiac oxidative stress, inflammation and fibrosis among different groups of aged mice were used to clarify the beneficial effects of taurine and fish oil supplementation. Our results not only revealed the protective effects of taurine and fish oil supplementation on heart dysfunction induced by PM2.5 exposure from the aged mice experiments and also provided new means for the elderly to resist PM2.5 pollution at the individual level.


Assuntos
Óleos de Peixe , Taurina , Animais , Camundongos , Estudos Transversais , Suplementos Nutricionais , Método Duplo-Cego , Inflamação/induzido quimicamente , Material Particulado/toxicidade , Taurina/farmacologia
19.
Nanoscale ; 14(29): 10299-10320, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35834293

RESUMO

Among the most abundant biopolymers in the biosphere, lignin is a renewable aromatic compound that represents an untapped opportunity to create new biological products. However, the complex interlacing structures of cellulose, hemicellulose and lignin, as well as the unique properties of lignin, limit the utilization of value-added lignin. Lignin-based nanomaterials open the door for lignin applications in environmental pollutant remediation, biofuel production, biomedicine, and other fields. Herein, we present various factors influencing the formation of micro-nanospheres by self-assembly techniques through a review of previous literature, and emphasize the simple and green synthesis of lignin micro/nanospheres (LMNPs) under non-modified conditions. More importantly, we discuss the mechanism of the formation of nanospheres. Considering the heterogeneity of lignin and the polarity of different solvents, we propose that self-assembly techniques should focus more on the influence brought by lignin itself or the solvent, so that the external conditions can be controlled to prepare LMNPs, which can be used in specific fields. A brief overview of the contribution of lignin-based nanomaterials in various fields is also presented. This review could provide insight for the development of lignin-based nanomaterials.


Assuntos
Lignina , Nanosferas , Celulose/química , Lignina/química , Solventes/química , Tecnologia
20.
Environ Sci Technol ; 56(15): 10629-10637, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35834306

RESUMO

Substituted para-phenylenediamine (PPD) antioxidants have been extensively used to retard oxidative degradation of tire rubber and were found to pervade multiple environmental compartments. However, there is a paucity of research on the environmental occurrences of their transformation products. In this study, we revealed the co-occurrence of six PPD-derived quinones (PPD-Qs) along with eight PPDs in fine particulate matter (PM2.5) from two Chinese megacities, in which N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine quinone (77PD-Q) was identified and quantified for the first time. Prevalent occurrences of these emerging PPD-Qs were found in Taiyuan (5.59-8480 pg/m3) and Guangzhou (3.61-4490 pg/m3). Significantly higher levels of PPDs/PPD-Qs were observed at a roadside site, implying the possible contribution of vehicle emissions. Correlation analysis implied potential consistencies in the fate of these PPD-Qs and suggested that most of them were originated from the transformation of their parent PPDs. For different subpopulation groups under different exposure scenarios, the estimated daily intakes of PPD-Qs (0.16-1.25 ng kgbw-1 day-1) were comparable to those of their parent PPDs (0.19-1.41 ng kgbw-1 day-1), suggesting an important but overlooked exposure caused by novel PPD-Qs. Given the prolonged exposure of these antioxidants and their quinone derivatives to traffic-relevant occupations, further investigations on their toxicological and epidemiological effects are necessary.


Assuntos
Antioxidantes , Material Particulado , Benzoquinonas , Material Particulado/análise , Fenilenodiaminas/análise , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA