Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
2.
J Immunother Cancer ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719544

RESUMO

OBJECTIVE: To evaluate the safety and preliminary efficacy of YSCH-01 (Recombinant L-IFN adenovirus) in subjects with advanced solid tumors. METHODS: In this single-center, open-label, investigator-initiated trial of YSCH-01, 14 patients with advanced solid tumors were enrolled. The study consisted of two distinct phases: (1) the dose escalation phase and (2) the dose expansion phase; with three dose groups in the dose escalation phase based on dose levels (5.0×109 viral particles (VP)/subject, 5.0×1010 VP/subject, and 5.0×1011 VP/subject). Subjects were administered YSCH-01 injection via intratumoral injections. The safety was assessed using National Cancer Institute Common Terminology Criteria for Adverse Events V.5.0, and the efficacy evaluation was performed using Response Evaluation Criteria in Solid Tumor V.1.1. RESULTS: 14 subjects were enrolled in the study, including 9 subjects in the dose escalation phase and 5 subjects in the dose expansion phase. Of the 13 subjects included in the full analysis set, 4 (30.8%) were men and 9 (69.2%) were women. The most common tumor type was lung cancer (38.5%, 5 subjects), followed by breast cancer (23.1%, 3 subjects) and melanoma (23.1%, 3 subjects). During the dose escalation phase, no subject experienced dose-limiting toxicities. The content of recombinant L-IFN adenovirus genome and recombinant L-IFN protein in blood showed no trend of significant intergroup changes. No significant change was observed in interleukin-6 and interferon-gamma. For 11 subjects evaluated for efficacy, the overall response rate with its 95% CI was 27.3% (6.02% to 60.97%) and the disease control rate with its 95% CI was 81.8% (48.22% to 97.72%). The median progression-free survival was 4.97 months, and the median overall survival was 8.62 months. In addition, a tendency of decrease in the sum of the diameters of target lesions was observed. For 13 subjects evaluated for safety, the overall incidence of adverse events (AEs) was 92.3%, the overall incidence of adverse drug reactions (ADRs) was 84.6%, and the overall incidence of >Grade 3 AEs was 7.7%, while no AEs/ADRs leading to death occurred. The most common AEs were fever (69.2%), nausea (30.8%), vomiting (30.8%), and hypophagia (23.1%). CONCLUSIONS: The study shows that YSCH-01 injections were safe and well tolerated and exhibited preliminary efficacy in patients with advanced solid tumors, supporting further investigation to evaluate its efficacy and safety. TRIAL REGISTRATION NUMBER: NCT05180851.


Assuntos
Neoplasias , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenoviridae/genética , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/efeitos adversos , Resultado do Tratamento
3.
Plant Physiol Biochem ; 211: 108679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714127

RESUMO

Cold stress is a limiting stress factor that limits plant distribution and development; however, polyploid plants have specific characteristics such as higher resistance to abiotic stress, especially cold stress, that allow them to overcome this challenge. The cultivated cultivar Ziziphus jujuba Mill. 'Yueguang' (YG) and its autotetraploid counterpart 'Hongguang' (HG) exhibit differential cold tolerance. However, the underlying molecular mechanism and methods to enhance their cold tolerance remain unknown. Anatomical structure and physiological analysis indicated YG had a higher wood bark ratio, and xylem ratio under cold treatment compared to HG. However, the half-lethal temperature (LT50), cortex ratio, and malondialdehyde (MDA) content were significantly decreased in YG than HG, which indicated YG was cold tolerant than HG. Transcriptome analysis showed that 2084, 1725, 2888, and 2934 differentially expressed genes (DEGs) were identified in HC vs YC, H20 vs Y20, Y20 vs YC, and H20 vs HC treatment, respectively. Meanwhile, KEGG enrichment analysis of DEGs showed that several metabolic pathways, primarily plant hormone signal transduction and the MAPK signaling pathway, were involved in the differential regulation of cold tolerance between YG and HG. Furthermore, exogenous abscisic acid (ABA) and brassinolide (BR) treatments could improve their cold tolerance through increased SOD and POD activities, decreased relative electrical conductivity, and MDA content. All of these findings suggested that plant hormone signal transduction, particularly ABA and BR, might have an important role in the regulation of differential cold tolerance between YG and HG, laying the foundation for further improving cold tolerance in jujube and examining the molecular mechanisms underlying differences in cold tolerance among different ploidy cultivars.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , Ziziphus/metabolismo , Resposta ao Choque Frio/genética , Transcriptoma/genética , Temperatura Baixa , Malondialdeído/metabolismo
4.
Plant Physiol Biochem ; 210: 108568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581806

RESUMO

Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.


Assuntos
Parede Celular , Parede Celular/metabolismo , Frutas/metabolismo , Frutas/fisiologia
5.
Int J Retina Vitreous ; 10(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167553

RESUMO

BACKGROUND: To evaluate retinal structural and functional changes after silicone oil (SO) removal in eyes with macula-off rhegmatogenous retinal detachment (RRD). METHODS: Best-corrected visual acuity (BCVA) testing, microperimetry, and optical coherence tomography angiography were performed in 48 eyes with macula-off RRD before and 3 months after SO removal. The values of healthy contralateral eyes were used as control data. Correlations between retinal vessel density (VD), retinal nerve fiber layer thickness (RNFLT), the interval between retinal detachment and surgery, the duration of SO tamponade, the follow-up time after SO removal, and visual function were analyzed. RESULTS: Significant increases in 2˚ fixation rate (FR), 4˚ FR, 2˚ mean retinal sensitivity (MRS), 6˚ MRS, parafoveal superficial capillary plexus VD and RNFLT were observed after SO removal (all P < 0.05). The increase of 2˚ MRS and 6˚ MRS were correlated with the duration of SO tamponade and the follow-up time after SO removal respectively (all P < 0.05). The last 2˚ MRS and 6˚ MRS were correlated with the duration of SO tamponade, the interval between retinal detachment and surgery, and the follow-up time after SO removal (all P < 0.01). The last FR in RRD eyes was close to that of contralateral eyes (P > 0.05). CONCLUSION: Retinal structure and function improved to different degrees after SO removal. Fixation stability and retinal sensitivity increased more than BCVA postoperatively. Retinal sensitivity, which was affected by the interval between retinal detachment and surgery and the duration of SO tamponade, gradually recovered after SO removal.

6.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836115

RESUMO

Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals.

7.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762526

RESUMO

Light quality is highly important for growth control of in vitro plant cultures. Here, we investigated the effect of blue light (BL), red light (RL) and combined red and blue light (RBL) on in vitro cassava growth. Our results indicate that RL facilitated radial elongation of cassava and increased stomatal conductance as well as glucose, sucrose, fructose and starch content in leaves and cellulose content in the stem. It also enhanced SOD and POD activities but decreased the stomatal density and chlorophyll and carotenoid content in leaves. In addition, RL leads to shorter palisade cells, denser chloroplasts and more starch granules. These phenotypic changes were inverted following BL treatment. The expression levels of photosynthesis-related genes MeLHCA1, MeLHCA3, MePSB27-2, MePSBY, MePETE1 and MePNSL2 in leaves were at their lowest following RL treatment, while the expression levels of MePSB27-2, MePSBY, MePETE1 and MePNSL2 were at their highest after BL treatment. The phenotypic changes after RBL treatment were between the values observed for the RL and BL treatments alone. Moreover, the responses of SC8 and SC9 cassava varieties to light quality were largely conserved. As such, we believe that the results of this study lay the foundation for controlling the in vitro growth of cassava seedlings by light quality.

8.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447090

RESUMO

Plant pectin methylesterases (PMEs) play crucial roles in regulating cell wall modification and response to various stresses. Members of the PME family have been found in several crops, but there is a lack of research into their presence in cassava (Manihot esculent), which is an important crop for world food security. In this research, 89 MePME genes were identified in cassava that were separated into two types (type-Ⅰ and type-Ⅱ) according to the existence or absence of a pro-region (PMEI domain). The MePME gene members were unevenly located on 17 chromosomes, with 19 gene pairs being identified that most likely arose via duplication events. The MePMEs could be divided into ten sub-groups in type-Ⅰ and five sub-groups in type-Ⅱ. The motif analysis revealed 11 conserved motifs in type-Ⅰ and 8 in type-Ⅱ MePMEs. The number of introns in the CDS region of type-Ⅰ MePMEs ranged between one and two, and the number of introns in type-Ⅱ MePMEs ranged between one and nine. There were 21 type-Ⅰ and 31 type-Ⅱ MePMEs that contained signal peptides. Most of the type-Ⅰ MePMEs had two conserved "RK/RLL" and one "FPSWVS" domain between the pro-region and the PME domain. Multiple stress-, hormone- and tissue-specific-related cis-acting regulatory elements were identified in the promoter regions of MePME genes. A total of five co-expressed genes (MePME1, MePME2, MePME27, MePME65 and MePME82) were filtered from different abiotic stresses via the use of UpSet Venn diagrams. The gene expression pattern analysis revealed that the expression of MePME1 was positively correlated with the degree of cassava postharvest physiological deterioration (PPD). The expression of this gene was also significantly upregulated by 7% PEG and 14 °C low-temperature stress, but slightly downregulated by ABA treatment. The tissue-specific expression analysis revealed that MePME1 and MePME65 generally displayed higher expression levels in most tissues than the other co-expressed genes. In this study, we obtain an in-depth understanding of the cassava PME gene family, suggesting that MePME1 could be a candidate gene associated with multiple abiotic tolerance.

9.
J Ginseng Res ; 46(6): 750-758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36312734

RESUMO

Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a protein-protein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

10.
Front Plant Sci ; 13: 996981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186034

RESUMO

Pb is one of the most ubiquitously distributed heavy metal pollutants in soils and has serious negative effects on plant growth, food safety, and public health. Pectin methylesterase inhibitors (PMEIs) play a pivotal role in regulating the integrity of plant cell walls; however, the molecular basis by which PMEIs promote plant resistance to abiotic stress remains poorly understood. In this study, we identified a novel PMEI gene, MePMEI1, from Manihot esculenta, and determined its role in plant resistance to Pb stress. The expression of MePMEI1 was remarkably upregulated in the roots, stems, and leaves of cassava plants following exposure to Pb stress. An analysis of subcellular localization revealed that the MePMEI1 protein was localized in the cell wall. MePMEI1 inhibited commercial orange peel pectin methyltransferase (PME), and the expression of MePMEI1 in Arabidopsis decreased the PME activity, indicating that MePMEI1 can inhibit PME activity in the cell wall. Additionally, the overexpression of MePMEI1 in Arabidopsis reduced oxidative damage and induced the thickening of cell walls, thus contributing to Pb tolerance. Altogether, the study reports a novel mechanism by which the MePMEI1 gene, which encodes the PMEI protein in cassava, plays an essential role in promoting tolerance to Pb toxicity by regulating the thickness of cell walls. These results provide a theoretical basis for the MePMEI1-mediated plant breeding for increasing heavy metal tolerance and provide insights into controlling Pb pollution in soils through phytoremediation in future studies.

11.
J Ginseng Res ; 46(5): 666-674, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36090685

RESUMO

Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3ß activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3ß (p-Ser9 GSK 3ß), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3ß activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3ß polypeptide. PPD promoted the binding and subsequently decreased GSK 3ß activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3ß (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3ß kinase activity, thereby activating the plasticity-related CREB-BDNF signaling pathway.

12.
Genes (Basel) ; 13(9)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36140817

RESUMO

Cassava starch is a widely used raw material for industrial production. South Chinese cassava cultivar 8 (Manihot esculenta Crantz cv. SC8) is one of the main locally planted cultivars. In this study, an efficient transformation system for cassava SC8 mediated with Agrobacterium strain LBA4404 was presented for the first time. Cassava friable embryogenic calli (FECs) were transformed through the binary vector pCAMBIA1304 harboring GUS- and GFP-fused genes driven by the CaMV35S promoter. The transformation efficiency was increased in the conditions of Agrobacterium strain cell infection density (OD600 = 0.65), 250 µM acetosyringone induction, and agro-cultivation with wet FECs for 3 days in dark. Based on the optimized transformation protocol, approximately 120-140 independent transgenic lines per mL settled cell volume (SCV) of FECs were created by gene transformation in approximately 5 months, and 45.83% homozygous mono-allelic mutations of the MePDS gene with a YAO promoter-driven CRISPR/Cas9 system were generated. This study will open a more functional avenue for the genetic improvement of cassava SC8.


Assuntos
Manihot , Edição de Genes , Manihot/genética , Amido/metabolismo , Transformação Genética
13.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563603

RESUMO

Glyoxalase I (GLYI) is a key enzyme in the pathway of the glyoxalase system that degrades the toxic substance methylglyoxal, which plays a crucial part in plant growth, development, and stress response. A total of 19 GLYI genes were identified from the cassava genome, which distributed randomly on 11 chromosomes. These genes were named MeGLYI-1-19 and were systematically characterized. Transcriptome data analysis showed that MeGLYIs gene expression is tissue-specific, and MeGLYI-13 is the dominant gene expressed in young tissues, while MeGLYI-19 is the dominant gene expressed in mature tissues and organs. qRT-PCR analysis showed that MeGLYI-13 is upregulated under 2 h excess iron stress, but downregulated under 6, 12, and 20 h iron stress. Overexpression of MeGLYI-13 enhanced the growth ability of transgenic yeast under iron stress. The root growth of transgenic Arabidopsis seedlings was less inhibited by iron toxicity than that of the wild type (WT). Potted transgenic Arabidopsis blossomed and podded under iron stress, but flowering of the WT was significantly delayed. The GLYI activity in transgenic Arabidopsis was improved under both non-iron stress and iron stress conditions compared to the WT. The SOD activity in transgenic plants was increased under iron stress, while the POD and CAT activity and MDA content were decreased compared to that in the WT. These results provide a basis for the selection of candidate genes for iron toxicity tolerance in cassava, and lay a theoretical foundation for further studies on the functions of these MeGLYI genes.


Assuntos
Arabidopsis , Lactoilglutationa Liase , Manihot , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Ferro/toxicidade , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
14.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406926

RESUMO

Alkaline/neutral invertase (A/N-INV) is an invertase that irreversibly decomposes sucrose into fructose as well as glucose and plays a role in plant growth and development, starch synthesis, abiotic stress, and other plant-life activities. Cassava is an economically important starch crop in tropical regions. During the development of cassava tuber roots, A/N-INV activity is relatively high, which indicates that it may participate in sucrose metabolism and starch synthesis. In this study, MeNINV1 was confirmed to function as invertase to catalyze sucrose decomposition in yeast. The optimal enzymatic properties of MeNINV1 were a pH of 6.5, a reaction temperature of 40 °C, and sucrose as its specific catalytic substrate. VB6, Zn2+, and Pb2+ at low concentrations as well as EDTA, DTT, Tris, Mg2+, and fructose inhibited A/N-INV enzymic activity. In cassava, the MeNINV1 gene was mainly expressed in the fibrous roots and the tuber root phloem, and its expression decreased as the tuber root grew. MeNINV1 was confirmed to localize in chloroplasts. In Arabidopsis, MeNINV1-overexpressing Arabidopsis had higher A/N-INV activity, and the increased glucose, fructose, and starch content in the leaves promoted plant growth and delayed flowering time but did not change its resistance to abiotic stress. Our results provide new insights into the biological function of MeNINV1.

15.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1336-1342, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343162

RESUMO

This study aims to explore the targets of ginsenosides in brain based on drug affinity responsive target stability(DARTS) technology. Specifically, DARTS technology was combined with label-free liquid chromatography tandem mass spectrometry(LC-MS) to screen out the proteins in the brain that might interact with ginsenosides. Based on the screening results, adenylate kinase 1(AK1) was selected for further confirmation. First, the His-AK1 fusion protein was yielded successively through the construction of recombinant prokaryotic expression vector, expression of target protein, and purification of the fusion protein. Biolayer interferometry(BLI) was employed to detect the direct interaction of Rg_1, Re, Rb_1, Rd, Rh_2, F1, Rh_1, compound K(CK), 25-OH-PPD, protopanaxa-diol(PPD), and protopanaxatriol(PPT) with AK1, thereby screening the ginsenoside monomer or sapogenin that had strong direct interaction with the suspected target protein AK1. Then, the BLI was used to further determine the kinetic parameters for the binding of PPD(strongest interaction with AK1) to His-AK1 fusion protein. Finally, molecular docking technology was applied to analyze the binding properties between the two. With DARTS and LC-MS, multiple differential proteins were screened out, and AK1 was selected based on previous research for target verification. Fusion protein His-AK1 was obtained by prokaryotic expression, and the response(nm) of Re, Rg_1, Rd, Rb_1, Rh_1, Rh_2, F1, PPT, PPD, 25-OH-PPD, and CK with His-AK1 was respectively 0.003 1, 0.001 9, 0.042 8, 0.022 2, 0.013 4, 0.037 3, 0.013 9, 0.030 7, 0.140 2, 0.016 0, and 0.040 8. The K_(on), K_(off), and K_D values of PPD and His-AK1 were determined by the BLI as 1.22×10~2 mol~(-1)·L·s~(-1), 1.04×10~(-2) s~(-1), 8.52×10~(-5) mol·L~(-1). According to the molecular docking result, PPD bound to AK1 with the absolute value of the docking score of 3.438, and hydrogen bonds mainly formed between the two. Thus, AK1 is one of the protein action sites of ginsenosides in the brain. The direct interaction between ginsenoside metabolite PPD and AK1 is the strongest.


Assuntos
Ginsenosídeos , Encéfalo/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Tecnologia
16.
J Agric Food Chem ; 70(8): 2741-2751, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184563

RESUMO

Ginseng is a very famous Chinese herbal medicine with various pharmacological effects. Ginsenosides, the main effective compounds of ginseng, show favorable biological activities in the central nervous system (CNS), but the protein targets of ginsenosides in brain tissues have not been clarified clearly. First, we screened proteins that interact with ginsenosides by mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Then, we identified and confirmed adenylate kinase 5 (AK5) as a target protein of ginsenosides by biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular docking. Finally, an enzyme activity kit was used to determine the effect of 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, on AK5 activities in vivo and in vitro. We screened out seven overlapping target proteins by proteomics of DARTS and CETSA. The BLI direct action assays showed that the direct interaction of PPD with AK5 was higher compared to the parental ginsenosides. Subsequently, BLI kinetic analysis and ITC assay showed that PPD specifically bound to AK5. Furthermore, key amino acid mutations predicted by molecular docking decreased the affinity between PPD and AK5. Enzyme activity assays showed that PPD increased AK5 activities in vivo and in vitro. The above-mentioned findings indicated that AK5 is a protein target of ginsenoside in the brain and PPD is considered to be a small-molecular activator of AK5, which can improve comprehension of the molecular mechanisms of ginseng pharmacological effects in the CNS and further develop AK5 activators based on the dammarane-type triterpenoid structure.


Assuntos
Ginsenosídeos , Panax , Preparações Farmacêuticas , Sapogeninas , Adenilato Quinase , Encéfalo/metabolismo , Ginsenosídeos/química , Cinética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Panax/química , Preparações Farmacêuticas/metabolismo , Sapogeninas/metabolismo
17.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613690

RESUMO

Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8. The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from 68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS. GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis. By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism and flavonoid biosynthesis. The protein-protein interaction (PPI) networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub genes were characterized to have a degree in excess of 15, among which eight genes were associated with photosynthesis. These results provide new information for the study of cassava resistance to PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties.


Assuntos
Manihot , Raízes de Plantas , Raízes de Plantas/metabolismo , Manihot/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Indian J Ophthalmol ; 69(12): 3579-3583, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34826999

RESUMO

PURPOSE: To evaluate the peripapillary changes after vitrectomy and silicone oil (SO) tamponade in eyes with rhegmatogenous retinal detachment (RRD). METHODS: In this study, 25-gauge vitrectomy with SO tamponade was performed in 22 eyes with RRD. The radial peripapillary capillary (RPC) vessel density (VD) and retinal nerve fiber layer thickness (RNFLT) were assessed by optical coherence tomography angiography at 2, 4, 8, and 12 weeks postoperatively. The values of healthy fellow eyes were used as controls. RESULTS: The global RPC VDs were significantly lower in the eyes with RRD than in fellow healthy eyes at 2 weeks (P < 0.001), and increased at 4 weeks, then decreased over time after surgery (F = 1.046, P = 0.377). The RPC VDs in the superior-hemifield were lower than those in the inferior-hemifield at 12 weeks postoperatively (t = -2.844, P = 0.010). The global RNFLTs decreased gradually after vitrectomy in the eyes with RRD (F = 1.312, P = 0.276). The RNFLTs in the superior-hemifield were thinner than those in the inferior-hemifield at 12 weeks postoperatively (t = -2.222, P = 0.037). The global, superior, and inferior RNFLTs were correlated with corresponding RPC VDs in the eyes with RRD at all time-points postoperatively (P < 0.05). CONCLUSION: RRD resulted in the decrease of RPC VDs. The RPC VDs recovered in the early postoperative period but were still lower than the normal level. Long-term application of SO tamponade resulted in the reduction of peripapillary VDs secondary to loss of RNFLTs.


Assuntos
Descolamento Retiniano , Humanos , Retina , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/cirurgia , Estudos Retrospectivos , Óleos de Silicone , Tomografia de Coerência Óptica , Acuidade Visual , Vitrectomia
19.
Plants (Basel) ; 10(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066809

RESUMO

Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I-IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.

20.
Int J Ophthalmol ; 14(6): 881-886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150544

RESUMO

AIM: To evaluate macular microvasculature changes in eyes after pars plana vitrectomy (PPV) and intraocular silicone oil (SO) tamponade for macula-off rhegmatogenous retinal detachment (RRD) using optical coherence tomography angiography (OCTA). METHODS: Totally 19 eyes (19 patients) with macula-off RRD who underwent PPV and intraocular SO tamponade were retrospectively reviewed. The parafoveal superficial capillary plexus (SCP) vessel density (VD), deep capillary plexus (DCP) VD, choriocapillaris plexus (CCP) VD, and foveal macular thickness were evaluated using OCTA throughout 16wk postoperatively. The values of healthy fellow eyes were used as control. RESULTS: The parafoveal SCP, DCP, and CCP VDs were significant increased over time in RRD eyes during the 12wk postoperatively, then decreased at 16wk postoperatively (all P<0.01). The ratios of RRD eyes and fellow healthy eyes (r/f ratios) of the SCP and DCP VDs were lower than those of the CCP VD postoperatively (all P<0.05). There were not significant differences in the r/f ratios between SCP and DCP VDs postoperatively (all P>0.05). CONCLUSION: The parafoveal SCP, DCP, and CCP VDs gradually recover over time after PPV surgery with SO tamponade. Long-time SO tamponade might decrease postoperative macular VDs. Compared to parafoveal CCP VD, the parafoveal SCP and DCP VDs were more vulnerable in RRD eyes postoperatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA