Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(37): 14998-15007, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241035

RESUMO

Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials. At the same time, continually oscillating radiation force and fluid shear stress exerted on cells effectively disturbs cellular membrane mobility and enhances permeability, thereby facilitating nanodrug entrance. In experiments, cell oscillation is tunable in frequency (10-2 to 102 Hz), shaking direction, amplitude (0 to quarter acoustic wavelength), and speed. Doxorubicin is actively delivered across cellular membranes and accumulates in inner cells, with a concentration more than 8 times that of the control group. Moreover, there is no obvious compromise in cell activity during oscillation, exhibiting excellent biocompatibility. This "dancing acoustic waves" scheme introduces a new dimension of cell manipulation in both space and time domains and an effective drug delivering strategy, offering advantages of flexibility, gentleness, and high throughput. It may advance related fields like nanobiological research, drug and nanomedicine development, and medical treatment.


Assuntos
Acústica , Doxorrubicina , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química
2.
Nanomaterials (Basel) ; 14(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39269113

RESUMO

Surface enhanced fluorescence (SEF) based on noble metal nanoparticles is an effective means to achieve high sensitivity in fluorescence detection. Currently, the physical mechanism behind enhanced fluorescence is not fully understood. This paper measures the fluorescence signals of Dihydroporphyrin f methyl ether (CPD4) under both single-photon and two-photon excitation based on submicrometer silver particles with rough morphologies, achieving enhancement factors of 34 and 45 times, respectively. On this basis, by combining the radiative field characteristics produced by the silver particles, a stimulated radiation model of molecules is established to elucidate the changes in the molecular photophysical process when influenced by silver particles. Moreover, the fluorescence lifetime of the molecules was measured, showing that the presence of silver particles induces an increase in the molecular radiative decay rate, causing the fluorescence lifetime to decay from 3.8 ns to 3 ns. The results indicate that the fluorescence enhancement primarily originates from the submicrometer silver particles' enhancement effect on the excitation light. Additionally, the fluorescence signal emitted by the molecules couples with the silver particles, causing the local surface plasmon resonances generated by the silver particles to also emit light signals of the same frequency. Under the combined effect, the fluorescence of the molecules is significantly enhanced. The findings provide a theoretical foundation for understanding the fluorescence enhancement mechanism of silver particles, adjusting the enhancement effect, and developing enhanced fluorescence detection devices based on submicrometer silver particles, holding significant practical importance.

3.
Nat Commun ; 15(1): 7217, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174533

RESUMO

Electrically powered solitons are particle-like field configurations in out-of-equilibrium nematics that have garnered significant interest. However, their random generation and lack of controllable motion have limited their application. Here, we present a reconfigurable optoelectronic approach capable of regulating the entire lifecycle of solitons by utilizing multi-strategy digital light projection to construct delicate patterning of virtual electrode. We demonstrate that optically actuated domains with diverse geometry enable the generation of multiple solitons and further allow in-situ formation of individual soliton by matching the light pattern to its dimension. Exquisitely engineered light intensity of patterns facilitates modulation of soliton velocity and transformation of propagating direction. The utilization of a light-guided channel enables the on-demand control of soliton trajectories along customized paths. Furthermore, dynamic light patterns that vary in space and time allow for collective motion such as migration, mimicking phototaxis in biological systems. This reconfigurable manipulation strategy, grounded in the photoconductive effect, proves highly versatile and effective in directing soliton dynamics, heralding the potential for their programmable control and offering a significant advantage in multitasking scenarios.

4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2991-3001, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041159

RESUMO

Neuropathic pain(NP) is difficult to be treated since it has similar phenotypes but different pathogenesis in different pathological stages. Targeted intervention of the core regulatory elements at different pathological stages of NP has become a new direction of drug research and development in recent years and provides the possibility for the treatment of NP. The Mongolian medicine Naru-3(NR-3) is effective in the treatment of sciatica and trigeminal neuralgia, the mechanisms of which remain unknown. On the basis of the previous study of the priming stage, this study established the mouse model of spinal nerve ligation(SNL) and measured the changes of pain thresholds by behavioral tests. The network analysis, Western blot, immunofluorescence assay, ELISA, and agonist/antagonist were employed to decipher the mechanism of NR-3 in the treatment of NP in the maintenance stage. The results showed that NR-3 increased the mechanical and thermal pain thresholds of SNL mice, while it had no significant effect on the basal pain threshold of normal mice. NR-3 may relieve the pain in the maintenance stage of NP by blocking the matrix metalloproteinase 2(MMP2)/interleukin-1ß(IL-1ß) pathway in the astrocytes of the dorsal root ganglion(DRG) and spinal cord. The findings have enriched the biological connotation of NR-3 in the treatment of the maintenance stage of NP and provide reference for the rational use of this medicine in clinical practice.


Assuntos
Astrócitos , Medicina Tradicional da Mongólia , Neuralgia , Animais , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Camundongos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Doenças Neuroinflamatórias/tratamento farmacológico , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Modelos Animais de Doenças
5.
Nanomaterials (Basel) ; 14(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057848

RESUMO

To improve the wear resistance of the materials used for blades in engineering machinery, this study focused on the microstructural characteristics, mechanical properties, and wear behavior of HB500 grade wear-resistant steel developed using an optimized heat treatment system. To improve the temperature uniformity of the heat treatment furnace, the method of cyclic heating was used to heat the components. Carefully designing the quenching equipment, such as using a cross-shaped press, was employed to enhance the quenching effect and reduce the deformation of the steel plates. The crystal orientation analysis revealed a uniform and fine-grained microstructure, primarily characterized by plate-type tempered martensite, which indicated a good hardenability. The microstructure observations showed that the width of martensite is approximately 200 nm, with a significant presence of dislocations and carbides. Tensile tests and multi-temperature gradient impact tests indicated superior mechanical properties compared to similar grade wear-resistant steels, including a Rockwell hardness of 53, tensile strength of 1610 MPa, yield strength of 1404 MPa, and total elongation around 12.7%. The results of friction and wear experiments indicate that the wear rate decreases as the load increases from 100 N to 300 N, demonstrating an excellent wear resistance under a large load. Observations of the worn surfaces indicated that the wear mainly involved adhesive wear, fatigue wear, and oxidative wear. The properties' improvements were attributed to microstructure refinement and precipitation strengthening. This study indicates that designing a heat treatment system to control temperature uniformity and stability is feasible.

6.
ACS Nano ; 18(23): 15218-15228, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38819133

RESUMO

High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.


Assuntos
Acústica , Humanos , Microesferas , Lentes , Tamanho da Partícula
7.
Light Sci Appl ; 13(1): 27, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263398

RESUMO

Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical. In this study, we present a visual sensing platform based on geometric phase encoding of stimuli-responsive cholesteric liquid crystal polymers that generates real-time visual patterns, rather than frequency changes. To demonstrate this platform's effectiveness, we used a humidity-responsive cholesteric liquid crystal polymer film encoded with a q-plate pattern, which revealed that humidity causes a shape change in the vortex beam reflected from the encoded cholesteric liquid crystal polymers. Moreover, we developed a prototype platform towards remote humidity monitoring benefiting from the high directionality and long-range transmission properties of laser beams carrying orbital angular momentum. Our approach provides a novel sensing platform for cholesteric liquid crystals-based sensors that offers promising practical applications. The ability to generate recognizable sensing signals through visual patterns offers a new level of practicality in the sensing field with stimuli-responsive cholesteric liquid crystals. This platform might have significant implications for a broad readership and will be of interest to researchers working in the field of photonics and sensing technology.

8.
Soft Matter ; 19(24): 4483-4490, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37272958

RESUMO

As electrically generated solitons in liquid crystals, directrons represent intriguing structures promising extensive application prospects in the areas of microcargo vehicles, microreactors, and logic devices. However, manipulating directrons along elaborate predetermined trajectories still remains to be largely explored. In this work, the strategy of constructing high-resolution periodic alignment fields for directrons via the polarization holography photoalignment technique is presented. The optimum exposure dose for directrons to form over a broad range of electric fields is determined to be 32.4 J cm-2 for the alignment layers with 1 wt% azo dye SD1. Zigzag and fishhook-shaped trajectories of directrons are realized with two orthogonal polarized beams. The resolution for zigzag steering of directrons is evaluated to be approximately 56 µm to 80 µm, about three to four times the length of directrons. These results not only enrich the forms of motion of directrons, but also lay the foundations for customized trajectories of directrons in future developments.

9.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049642

RESUMO

The rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol tolerance. Noteworthy, the Fe-N-CNSs based zinc-air battery shows significant performance with a peak power density of 128.20 mW cm-2 and open circuit voltage of 1.53 V, which reveals that the Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that this research will provide guidance for the optimization of Fe-N-C materials.

10.
Clin Oral Implants Res ; 34(6): 555-564, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847706

RESUMO

BACKGROUND: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model. METHODS: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge. The H-PRF bone block was prepared by mixing 0.1 g DBBM with H-PRF fragments and then adding liquid H-PRF. Samples were collected after 4 and 8 weeks and analyzed using microcomputed tomography (micro-CT) for vertical bone gain of the sinus, bone volume/total volume (BV/TV) percentage, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). Then, histological analyses were performed to investigate new blood vessels, material residue, bone formation and osteoclasts. RESULTS: Higher vertical bone gain of the sinus floor, BV/TV percentage, Tb.Th, and Tb.N and lower Tb.Sp were found in the H-PRF bone block group at both time points compared with the DBBM group. Higher amounts of new blood vessels and more osteoclasts were found in the H-PRF bone block group than in the DBBM group at both time points, especially in the regions close to the bone plate. More new bone formation and less material residue were observed in the H-PRF bone block group at 8 weeks. CONCLUSIONS: H-PRF bone block showed greater potential for sinus augmentation by promoting angiogenesis, bone formation and bone remodeling in a rabbit model.


Assuntos
Substitutos Ósseos , Fibrina Rica em Plaquetas , Levantamento do Assoalho do Seio Maxilar , Masculino , Animais , Bovinos , Coelhos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Levantamento do Assoalho do Seio Maxilar/métodos , Microtomografia por Raio-X , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Regeneração Óssea
11.
Opt Express ; 31(2): 1878-1887, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785213

RESUMO

A high temporal waveform fidelity stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) with high energy efficiency, based on a novel medium, Novec-7500, is proposed and practically achieved in this study. A theoretical analysis reveals that the temporal-domain waveform distortion is caused by the inherent pulse duration compression effect of the SBS, and this undesirable phenomenon can be significantly suppressed by decreasing the compression coefficient (CC afterwards), which is defined as the gain coefficient divided by the phonon lifetime, which coefficient and is identified as the key parameter for high waveform-fidelity in SBS-PCM. The feasibility of this approach was demonstrated experimentally, in which a reflected pulse with waveform symmetry equals to the pump and an average pulse duration of 0.974 τp (τp is the duration of pump) with an energy efficiency of over 90% was achieved using Novec-7500.

12.
J Hazard Mater ; 446: 130691, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608576

RESUMO

The toxicity of metals to microorganisms is highly correlated with the type of metal used. However, the differences in the resistance mechanisms of filamentous fungi to multiple metals remain unclear. In this study, we investigated the responses of Aspergillus niger to three toxic metals, i.e., Pb2+, Cd2+, and Cu2+. Fungal growth and metabolism indices showed that A. niger had a higher tolerance to Pb2+ (>1000 mg L-1) than to Cu2+ (300 mg L-1) and Cd2+ (50 mg L-1). An appropriate Pb2+ concentration (<500 mg L-1) stimulated fungal growth and metabolic activity, whereas Cd2+ and Cu2+ stress showed continuously negative influences on fungal physiological parameters, such as biomass and secretion of oxalic acid. A. niger responded to Pb stress by constructing a new border layer around its cell wall. This pathway was also confirmed using RNA-seq analysis, i.e., the gene encoding cell wall α-1,3-glucan synthase was upregulated. This upregulation subsequently promoted the production of polysaccharides, which are the main components that support fungal cell walls. In contrast, the expression of genes encoding both AAA family ATPase and efflux pump antibiotic resistance proteins for Cd2+ and Cu2+ was significantly downregulated. Therefore, these findings elucidated the relatively complete fungal responses to different metal stresses.


Assuntos
Aspergillus niger , Cádmio , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Ácido Oxálico/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6457-6474, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212003

RESUMO

The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.


Assuntos
Dor Crônica , Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Dor Crônica/complicações , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Ligantes , Transdução de Sinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo
14.
Opt Express ; 30(19): 33603-33612, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242391

RESUMO

A dynamically reconfigurable liquid crystal (LC) photonic device is an important research field in modern LC photonics. We present a type of continuously tunable distributed Bragg reflector (DBR) based on LC polymer composites modulated via a novel optofluidic method. LC-templated DBR films are fabricated by photopolymerization under visible standing wave interference. The influences of the incident angle, incident light intensity, and content of ethanol as a pore-forming additive on the reflection behavior are discussed in detail. Then, the LC-templated DBR films are integrated into microfluidic channels and reversibly refilled by different organic solvents. The reconfigurable characteristics of optofluidic DBRs were demonstrated by changing the average refractive index (RI) of the mixed liquids and adjusting the flow rates, resulting in the dynamic and continuous variation of the reflection band within a specific visible light band. It is anticipated that the prototype optofluidic LC device will hopefully be applied to some specific scenarios where conventional means of regulation, such as electric, optical, and temperature fields, are unsuitable and possibly boost the development of microfluidic analysis techniques based on structural color.

15.
Biofabrication ; 14(4)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35764072

RESUMO

Precise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets. Digitally controlled six wave beams offer a high degree of freedom (including wave vector combination, frequency, phase, and amplitude) that enables versatile biomimetic micro cellular patterns in hydrogel sheets. Further, replaceable frames can be used to fix the acoustic-built micro-scale cellular structures in these sheets, enabling user-defined hierarchical or heterogeneous constructs through layer-by-layer assembly. This strategy can be employed to construct vasculature with different diameters and lengths, composed of human umbilical vein endothelial cells and smooth muscle cells. These constructs can also induce controllable vascular network formation. Overall, the findings of this work extend the capabilities of acoustic cell assembly into 3D space, offering advantages including innovative, flexible, and precise patterning, and displaying great potential for the manufacture of various artificial tissue structures that duplicatein vivofunctions.


Assuntos
Hidrogéis , Miócitos de Músculo Liso , Acústica , Biomimética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Engenharia Tecidual/métodos
16.
Opt Express ; 30(8): 12586-12595, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472892

RESUMO

The pulse duration of the near quarter-acoustic period (τa) is demonstrated in transient stimulated Brillouin scattering (SBS) pulse compression by the suppressing Stokes trailing-edge broadening at high intensities. A theoretical analysis reveals that the difficulty in attaining the transient compression limit is caused by the broadening of the Stokes trailing edge owing to insufficient pump depletion, and this undesirable phenomenon can be significantly suppressed by a high SBS gain coefficient. An average pulse duration of ∼1.05 τa was experimentally achieved in transient compression with a high-energy efficiency of over 30%. Benefiting from energy back conversion, compression below the transient SBS limit (< τa) also occurred when the pump peak power was increased to 150 MW.

17.
J Hazard Mater ; 426: 127984, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953259

RESUMO

The coexistence of heavy metals in aquatic systems causes complex toxicity in microorganisms. In this study, we explored the influences of Pb2+ addition on Cd2+ toxicity in Rhodotorula mucilaginosa (Rho). Cd toxicity alone was tested with up to 200 mg/L Cd2+ to induce stress. Cell counts and Cd2+ removal rates declined to a minimum when the Cd2+ concentration reached 150 mg/L, confirming strong Cd-induced toxicity. Then, co-existence of Pb2+ and Cd2+ was established as Pb-CdH (Pb/Cd = 1, molar ratio), Pb-CdM (Pb/Cd = 10), and Pb-CdL (Pb/Cd = 100). The Pb-CdL and Pb-CdM treatments showed clear similarities in terms of their effects on cell counts, polysaccharide concentrations, and cell morphology. There was also no significant difference in their gene expression profiles. The competition between the two types of cations caused preferential extra/intracellular sorption of less toxic Pb2+. Moreover, the expression of genes related to glycolysis, the TCA cycle, and oxidative phosphorylation was significantly enhanced in the cells with Pb-CdH treatment, suggesting that these cells were functional. Furthermore, the excitability-caused increase in the cell count after Pb-CdH treatment (Cd2+ = 112.4 mg/L) was 30% higher than that of the 100 mg/L Cd2+ treatment. These results proved that the addition of Pb2+ in solution significantly weakened the toxicity of Cd2+.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Fungos , Chumbo/toxicidade
18.
Appl Microbiol Biotechnol ; 105(16-17): 6477-6488, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34424384

RESUMO

Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb2+ and Cd2+ by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.e., CK (no toxic metals), Pb2+ only, Cd2+ only, Pb2+/Cd2+ = 1:1(molar ratio), and Pb2+/Cd2+ = 2:1. Cadmium induced strong toxicity to the fungus, and maintained the high toxicity during incubation. However, as Pb/Cd ratio increased from 0 to 2, the removal rates of Cd2+ by A. niger were raised from 30 to 50%. The elevated activities of pyruvate dehydrogenase (PDH) and citrate synthetase (CS) enzymes confirmed that Pb addition could stimulate the growth of A. niger. For instance, citric acid concentrations and CS activities were 463.22 mg/L and 78.37 nmol/min/g, respectively, during 3-day incubation as Pb/Cd = 1. However, these two values were as low as ~ 50 with addition of only Cd. It was hence assumed that appropriate co-existence of Pb2+ enhanced microbial activity by promoting TCA cycle of the fungus. Moreover, the SEM analysis and geochemical modeling demonstrated that Pb2+ cations were more easily adsorbed and mineralized on A. niger with respect to Cd2+. Therefore, instead of intensifying metal toxicity, the addition of appropriate Pb actually weakened Cd toxicity to the fungus. This study sheds a bright future on application of A. niger to the remediation of polluted water with co-existence of Pb and Cd. KEY POINTS: • Cd2+ significantly inhibited P consumption, suggesting its high toxicity to A. niger. • Pb2+ stimulated the growth of A. niger by promoting TCA cycle in the cells. • Cd2+ removal by A. niger were improved with co-existence of Pb2+.


Assuntos
Aspergillus niger , Cádmio , Bioacumulação , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Chumbo/toxicidade
19.
IEEE Trans Biomed Circuits Syst ; 15(2): 221-234, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33760741

RESUMO

The paper presents a 256-pixel CMOS sensor array with in-pixel dual electrochemical and impedance detection modalities for rapid, multi-dimensional characterization of exoelectrogens. The CMOS IC has 16 parallel readout channels, allowing it to perform multiple measurements with a high throughput and enable the chip to handle different samples simultaneously. The chip contains a total of 2 × 256 working electrodes of size 44 µm × 52 µm, along with 16 reference electrodes of dimensions 56 µm × 399 µm and 32 counter electrodes of dimensions 399 µm × 106 µm, which together facilitate the high resolution screening of the test samples. The chip was fabricated in a standard 130nm BiCMOS process. The on-chip electrodes are subjected to additional fabrication processes, including a critical Al-etch step that ensures the excellent biocompatibility and long-term reliability of the CMOS sensor array in bio-environment. The electrochemical sensing modality is verified by detecting the electroactive analyte NaFeEDTA and the exoelectrogenic Shewanella oneidensis MR-1 bacteria, illustrating the chip's ability to quantify the generated electrochemical current and distinguish between different analyte concentrations. The impedance measurements with the HEK-293 cancer cells cultured on-chip successfully capture the cell-to-surface adhesion information between the electrodes and the cancer cells. The reported CMOS sensor array outperforms the conventional discrete setups for exoelectrogen characterization in terms of spatial resolution and speed, which demonstrates the chip's potential to radically accelerate synthetic biology engineering.


Assuntos
Shewanella , Impedância Elétrica , Células HEK293 , Humanos , Reprodutibilidade dos Testes
20.
Front Chem ; 9: 832028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096783

RESUMO

Photodetectors converting optical signals into electrical signals have been widely utilized and have received more and more attention in scientific research and industrial fields including optical interconnection, optical communication, and environmental monitoring. Herein, we summarize the latest development of photodetectors with different micro-nano structures and different materials and the performance indicators of photodetectors. Several photodetectors, such as flexible, ultraviolet two-dimensional (2D) microscale, and dual-band photodetectors, are listed in this minireview. Meanwhile, the current bottleneck and future development prospects of the photodetector are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA