Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31451502

RESUMO

The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-ß-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.


Assuntos
Antifúngicos/farmacologia , Ácido Gálico/farmacologia , Glicosilação/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Pulmão/microbiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
2.
Mol Biol Cell ; 25(8): 1251-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24523285

RESUMO

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1 and vac14 mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/biossíntese , Proteínas de Membrana/genética , Pressão Osmótica , Fosfatos de Fosfatidilinositol/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Cloreto de Sódio/metabolismo
3.
Eukaryot Cell ; 11(4): 442-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327006

RESUMO

In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coimmunoprecipitation. We also demonstrate that Ste20 associates with vacuolar membranes and that Ste20 stimulates V-ATPase activity in isolated vacuolar membranes. This activation requires Ste20 kinase activity and does not depend on increased assembly of the V1 and V0 sectors of the V-ATPase, which is a major regulatory mechanism. Furthermore, loss of V-ATPase activity leads to a strong increase in invasive growth, possibly because these cells fail to store and mobilize nutrients efficiently in the vacuole in the absence of the vacuolar proton gradient. In contrast to the wild type, which grows in rather small, isolated colonies on solid medium during filamentation, hyperinvasive vma mutants form much bigger aggregates in which a large number of cells are tightly clustered together. Genetic data suggest that Ste20 and the protein kinase A catalytic subunit Tpk2 are both activated in the vma13Δ strain. We propose that during filamentous growth, Ste20 stimulates V-ATPase activity. This would sustain nutrient mobilization from vacuolar stores, which is beneficial for filamentous growth.


Assuntos
MAP Quinase Quinase Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ativação Enzimática , Deleção de Genes , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/enzimologia , Vacúolos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Eukaryot Cell ; 11(3): 282-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210831

RESUMO

Hyperosmotic stress activates an array of cellular detoxification mechanisms, including the high-osmolarity glycerol (HOG) pathway. We report here that vacuolar H(+)-ATPase (V-ATPase) activity helps provide osmotic tolerance in Saccharomyces cerevisiae. V-ATPase subunit genes exhibit complex haploinsufficiency interactions with HOG pathway components. vma mutants lacking V-ATPase function are sensitive to high concentrations of salt and exhibit Hog1p activation even at low salt concentrations, as demonstrated by phosphorylation of Hog1p, a shift in Hog1-green fluorescent protein localization, transcriptional activation of a subset of HOG pathway effectors, and transcriptional inhibition of parallel mitogen-activated protein kinase pathway targets. vma2Δ hog1Δ and vma3Δ pbs2Δ double mutants have a synthetic growth phenotype, poor salt tolerance, and an aberrant, hyper-elongated morphology on solid media, accompanied by activation of a filamentous response element-LacZ construct, indicating cross talk into the filamentous growth pathway. Vacuoles isolated from wild-type cells briefly exposed to salt show higher levels of V-ATPase activity, and Na(+)/H(+) exchange in isolated vacuolar vesicles suggests a biochemical basis for the genetic interactions observed. V-ATPase activity is upregulated during salt stress by increasing assembly of the catalytic V(1) sector with the membrane-bound V(o) sector. Together, these data suggest that the V-ATPase acts in parallel with the HOG pathway in order to mediate salt detoxification.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Adaptação Fisiológica , Genes Reporter , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Concentração Osmolar , Pressão Osmótica , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Tolerância ao Sal/genética , Transcrição Gênica , ATPases Vacuolares Próton-Translocadoras/genética
5.
Biochim Biophys Acta ; 1793(4): 650-63, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18786576

RESUMO

Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.


Assuntos
Lisossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ácidos/metabolismo , Transporte Proteico , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA