Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroimage ; 262: 119527, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917917

RESUMO

INTRODUCTION: The Centiloid scale was developed to harmonise the quantification of ß-amyloid (Aß) PET images across tracers, scanners, and processing pipelines. However, several groups have reported differences across tracers and scanners even after centiloid conversion. In this study, we aim to evaluate the impact of different pre and post-processing harmonisation steps on the robustness of longitudinal Centiloid data across three large international cohort studies. METHODS: All Aß PET data in AIBL (N = 3315), ADNI (N = 3442) and OASIS3 (N = 1398) were quantified using the MRI-based Centiloid standard SPM pipeline and the PET-only pipeline CapAIBL. SUVR were converted into Centiloids using each tracer's respective transform. Global Aß burden from pre-defined target cortical regions in Centiloid units were quantified for both raw PET scans and PET scans smoothed to a uniform 8 mm full width half maximum (FWHM) effective smoothness. For Florbetapir, we assessed the performance of using both the standard Whole Cerebellum (WCb) and a composite white matter (WM)+WCb reference region. Additionally, our recently proposed quantification based on Non-negative Matrix Factorisation (NMF) was applied to all spatially and SUVR normalised images. Correlation with clinical severity measured by the Mini-Mental State Examination (MMSE) and effect size, as well as tracer agreement in 11C-PiB-18F-Florbetapir pairs and longitudinal consistency were evaluated. RESULTS: The smoothing to a uniform resolution partially reduced longitudinal variability, but did not improve inter-tracer agreement, effect size or correlation with MMSE. Using a Composite reference region for 18F-Florbetapir improved inter-tracer agreement, effect size, correlation with MMSE, and longitudinal consistency. The best results were however obtained when using the NMF method which outperformed all other quantification approaches in all metrics used. CONCLUSIONS: FWHM smoothing has limited impact on longitudinal consistency or outliers. A Composite reference region including subcortical WM should be used for computing both cross-sectional and longitudinal Florbetapir Centiloid. NMF improves Centiloid quantification on all metrics examined.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Estudos Transversais , Humanos , Estudos Longitudinais , Tomografia por Emissão de Pósitrons/métodos
2.
EJNMMI Phys ; 9(1): 9, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122529

RESUMO

BACKGROUND: Multicentre clinical trials evaluating the role of 18F-Fluoroethyl-L-tyrosine (18F-FET) PET as a diagnostic biomarker in glioma management have highlighted a need for standardised methods of data analysis. 18F-FET uptake normalised against background in the contralateral brain is a standard imaging technique to delineate the biological tumour volume (BTV). Quantitative analysis of 18F-FET PET images requires a consistent and robust background activity. Currently, defining background activity involves the manual selection of an arbitrary region of interest, a process that is subject to large variability. This study aims to eliminate methodological errors in background activity definition through the introduction of a semiautomated method for region of interest selection. A new method for background activity definition, involving the semiautomated generation of mirror-image (MI) reference regions, was compared with the current state-of-the-art method, involving manually drawing crescent-shape (gCS) reference regions. The MI and gCS methods were tested by measuring values of background activity and resulting BTV of 18F-FET PET scans of ten patients with recurrent glioblastoma multiforme generated from inputs provided by seven readers. To assess intra-reader variability, each scan was evaluated six times by each reader. Intra- and inter-reader variability in background activity and BTV definition was assessed by means of coefficient of variation. RESULTS: Compared to the gCS method, the MI method showed significantly lower intra- and inter-reader variability both in background activity and in BTV definition. CONCLUSIONS: The proposed semiautomated MI method minimises intra- and inter-reader variability, providing a valuable approach for standardisation of 18F-FET PET quantitative parameters. Trial registration ANZCTR, ACTRN12618001346268. Registered 9 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374253.

3.
Neuroimage ; 233: 117928, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716154

RESUMO

Functional positron emission tomography (fPET) imaging using continuous infusion of [18F]-fluorodeoxyglucose (FDG) is a novel neuroimaging technique to track dynamic glucose utilization in the brain. In comparison to conventional static or dynamic bolus PET, fPET maintains a sustained supply of glucose in the blood plasma which improves sensitivity to measure dynamic glucose changes in the brain, and enables mapping of dynamic brain activity in task-based and resting-state fPET studies. However, there is a trade-off between temporal resolution and spatial noise due to the low concentration of FDG and the limited sensitivity of multi-ring PET scanners. Images from fPET studies suffer from partial volume errors and residual scatter noise that may cause the cerebral metabolic functional maps to be biased. Gaussian smoothing filters used to denoise the fPET images are suboptimal, as they introduce additional partial volume errors. In this work, a post-processing framework based on a magnetic resonance (MR) Bowsher-like prior was used to improve the spatial and temporal signal to noise characteristics of the fPET images. The performance of the MR guided method was compared with conventional denosing methods using both simulated and in vivo task fPET datasets. The results demonstrate that the MR-guided fPET framework denoises the fPET images and improves the partial volume correction, consequently enhancing the sensitivity to identify brain activation, and improving the anatomical accuracy for mapping changes of brain metabolism in response to a visual stimulation task. The framework extends the use of functional PET to investigate the dynamics of brain metabolic responses for faster presentation of brain activation tasks, and for applications in low dose PET imaging.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos de Coortes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Estimulação Luminosa/métodos
4.
Eur J Nucl Med Mol Imaging ; 48(7): 2225-2232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33495928

RESUMO

PURPOSE: Previous studies have shown that Aß-amyloid (Aß) likely promotes tau to spread beyond the medial temporal lobe. However, the Aß levels necessary for tau to spread in the neocortex is still unclear. METHODS: Four hundred sixty-six participants underwent tau imaging with [18F]MK6420 and Aß imaging with [18F]NAV4694. Aß scans were quantified on the Centiloid (CL) scale with a cut-off of 25 CL for abnormal levels of Aß (A+). Tau scans were quantified in three regions of interest (ROI) (mesial temporal (Me); temporoparietal neocortex (Te); and rest of neocortex (R)) and four mesial temporal region (entorhinal cortex, amygdala, hippocampus, and parahippocampus). Regional tau thresholds were established as the 95%ile of the cognitively unimpaired A- subjects. The prevalence of abnormal tau levels (T+) along the Centiloid continuum was determined. RESULTS: The plots of prevalence of T+ show earlier and greater increase along the Centiloid continuum in the medial temporal area compared to neocortex. Prevalence of T+ was low but associated with Aß level between 10 and 40 CL reaching 23% in Me, 15% in Te, and 11% in R. Between 40 and 70 CL, the prevalence of T+ subjects per CL increased fourfold faster and at 70 CL was 64% in Me, 51% in Te, and 37% in R. In cognitively unimpaired, there were no T+ in R below 50 CL. The highest prevalence of T+ were found in the entorhinal cortex, reaching 40% at 40 CL and 80% at 60 CL. CONCLUSION: Outside the entorhinal cortex, abnormal levels of cortical tau on PET are rarely found with Aß below 40 CL. Above 40 CL prevalence of T+ accelerates in all areas. Moderate Aß levels are required before abnormal neocortical tau becomes detectable.


Assuntos
Doença de Alzheimer , Proteínas tau , Amiloide , Peptídeos beta-Amiloides , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
5.
Eur J Nucl Med Mol Imaging ; 48(1): 9-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32394162

RESUMO

PURPOSE: Estimation of accurate attenuation maps for whole-body positron emission tomography (PET) imaging in simultaneous PET-MRI systems is a challenging problem as it affects the quantitative nature of the modality. In this study, we aimed to improve the accuracy of estimated attenuation maps from MRI Dixon contrast images by training an augmented generative adversarial network (GANs) in a supervised manner. We augmented the GANs by perturbing the non-linear deformation field during image registration between MRI and the ground truth CT images. METHODS: We acquired the CT and the corresponding PET-MR images for a cohort of 28 prostate cancer patients. Data from 18 patients (2160 slices and later augmented to 270,000 slices) was used for training the GANs and others for validation. We calculated the error in bone and soft tissue regions for the AC µ-maps and the reconstructed PET images. RESULTS: For quantitative analysis, we use the average relative absolute errors and validate the proposed technique on 10 patients. The DL-based MR methods generated the pseudo-CT AC µ-maps with an accuracy of 4.5% more than standard MR-based techniques. Particularly, the proposed method demonstrates improved accuracy in the pelvic regions without affecting the uptake values. The lowest error of the AC µ-map in the pelvic region was 1.9% for µ-mapGAN + aug compared with 6.4% for µ-mapdixon, 5.9% for µ-mapdixon + bone, 2.1% for µ-mapU-Net and 2.0% for µ-mapU-Net + aug. For the reconstructed PET images, the lowest error was 2.2% for PETGAN + aug compared with 10.3% for PETdixon, 8.7% for PETdixon + bone, 2.6% for PETU-Net and 2.4% for PETU-Net + aug.. CONCLUSION: The proposed technique to augment the training datasets for training of the GAN results in improved accuracy of the estimated µ-map and consequently the PET quantification compared to the state of the art.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Próstata , Tomografia Computadorizada por Raios X
6.
Neuroimage ; 226: 117603, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271271

RESUMO

Simultaneous magnetic resonance and positron emission tomography provides an opportunity to measure brain haemodynamics and metabolism in a single scan session, and to identify brain activations from multimodal measurements in response to external stimulation. However, there are few analysis methods available for jointly analysing the simultaneously acquired blood-oxygen-level dependant functional MRI (fMRI) and 18-F-fluorodeoxyglucose functional PET (fPET) datasets. In this work, we propose a new multimodality concatenated ICA (mcICA) method to identify joint fMRI-fPET brain activations in response to a visual stimulation task. The mcICA method produces a fused map from the multimodal datasets with equal contributions of information from both modalities, measured by entropy. We validated the method in silico, and applied it to an in vivo visual stimulation experiment. The mcICA method estimated the activated brain regions in the visual cortex modulated by both BOLD and FDG signals. The mcICA provides a fully data-driven analysis approach to analyse cerebral haemodynamic response and glucose uptake signals arising from exogenously induced neuronal activity.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
7.
Neuroimage ; 213: 116720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160950

RESUMO

Functional positron emission tomography (fPET) is a neuroimaging method involving continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of a PET examination. Compared with the conventional bolus administration of FDG in a static PET scan, which provides an average glucose uptake into the brain over an extended period of up to 30 â€‹min, fPET offers a significantly higher temporal resolution to study the dynamics of glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake and study its relationship with functional magnetic resonance imaging (fMRI). However, due to the unique characteristics of fPET signals, modelling of the fPET signal is a complex task and poses challenges for accurate interpretation of the results from fPET experiments. This study applied independent component analysis (ICA) to analyse resting state fPET data, and to compare the performance of ICA and the general linear model (GLM) for estimation of brain activation in response to tasks. The fPET signal characteristics were compared using GLM and ICA methods to model fPET data from a visual activation experiment. Our aim was to evaluate GLM and ICA methods for analysing task fPET datasets, and to apply ICA methods to the analysis of resting state fPET datasets. Using both simulation and in-vivo experimental datasets, we show that both ICA and GLM methods can successfully identify task related brain activation. We report fPET metabolic resting state brain networks revealed by application of the fPET ICA method to a cohort of 28 healthy subjects. Functional PET provides a unique method to map dynamic changes of glucose uptake in the resting human brain and in response to extrinsic stimulation.


Assuntos
Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Infusões Intravenosas , Masculino , Compostos Radiofarmacêuticos/administração & dosagem
8.
J Vis Exp ; (152)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31710045

RESUMO

Functional positron emission tomography (fPET) provides a method to track molecular targets in the human brain. With a radioactively-labelled glucose analogue, 18F-fluordeoxyglucose (FDG-fPET), it is now possible to measure the dynamics of glucose metabolism with temporal resolutions approaching those of functional magnetic resonance imaging (fMRI). This direct measure of glucose uptake has enormous potential for understanding normal and abnormal brain function and probing the effects of metabolic and neurodegenerative diseases. Further, new advances in hybrid MR-PET hardware make it possible to capture fluctuations in glucose and blood oxygenation simultaneously using fMRI and FDG-fPET. The temporal resolution and signal-to-noise of the FDG-fPET images is critically dependent upon the administration of the radiotracer. This work presents two alternative continuous infusion protocols and compares them to a traditional bolus approach. It presents a method for acquiring blood samples, time-locking PET, MRI, experimental stimulus, and administering the non-traditional tracer delivery. Using a visual stimulus, the protocol results show cortical maps of the glucose-response to external stimuli on an individual level with a temporal resolution of 16 s.


Assuntos
Encéfalo/patologia , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Feminino , Humanos , Masculino
9.
Neuroimage ; 189: 258-266, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615952

RESUMO

Studies of task-evoked brain activity are the cornerstone of cognitive neuroscience, and unravel the spatial and temporal brain dynamics of cognition in health and disease. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) is one of the most common methods of studying brain function in humans. BOLD-fMRI indirectly infers neuronal activity from regional changes in blood oxygenation and is not a quantitative metric of brain function. Regional variation in glucose metabolism, measured using [18-F] fluorodeoxyglucose positron emission tomography (FDG-PET), provides a more direct and interpretable measure of neuronal activity. However, while the temporal resolution of BOLD-fMRI is in the order of seconds, standard FDG-PET protocols provide a static snapshot of glucose metabolism. Here, we develop a novel experimental design for measurement of task-evoked changes in regional blood oxygenation and glucose metabolism with high temporal resolution. Over a 90-min simultaneous BOLD-fMRI/FDG-PET scan, [18F] FDG was constantly infused to 10 healthy volunteers, who viewed a flickering checkerboard presented in a hierarchical block design. Dynamic task-related changes in blood oxygenation and glucose metabolism were examined with temporal resolution of 2.5sec and 1-min, respectively. Task-related, temporally coherent brain networks of haemodynamic and metabolic connectivity were jointly coupled in the visual cortex, as expected. Results demonstrate that the hierarchical block design, together with the infusion FDG-PET technique, enabled both modalities to track task-related neural responses with high temporal resolution. The simultaneous MR-PET approach has the potential to provide unique insights into the dynamic haemodynamic and metabolic interactions that underlie cognition in health and disease.


Assuntos
Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Projetos de Pesquisa , Fatores de Tempo , Córtex Visual/metabolismo , Adulto Jovem
10.
Hum Brain Mapp ; 39(12): 5126-5144, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076750

RESUMO

Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neuroimagem/métodos , Neurociências/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Imagem Multimodal/normas , Neuroimagem/normas , Neurociências/normas , Tomografia por Emissão de Pósitrons/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA