Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nutrients ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794751

RESUMO

Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.


Assuntos
Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Fígado , Saponinas , Saponinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Humanos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/efeitos dos fármacos
2.
Appl Microbiol Biotechnol ; 108(1): 314, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683435

RESUMO

The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.


Assuntos
Ração Animal , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Animais , Fibras na Dieta/metabolismo , Suínos , Microbioma Gastrointestinal/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos Voláteis/metabolismo
3.
Foods ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37893679

RESUMO

Peanut vine is a typical peanut by-product and can be used as a quality roughage resource. Whole-plant corn silage is a commonly used roughage. However, few studies have investigated the effects of diets combining peanut vine and whole-plant corn silage on growth performance, antioxidant capacity, meat quality, rumen fermentation and microbiota of beef cattle. To investigate these effects, eighty Simmental crossbred cattle (body weight, 451.27 ± 10.38 kg) approximately 14 months old were randomly divided into four treatments for a 90-day feeding experiment. A one-way design method was used in this experiment. According to the roughage composition, the cattle were divided into a control treatment of 45% wheat straw and 55% whole-plant corn silage (WG), and three treatments of 25% peanut vine and 75% whole-plant corn silage (LPG), 45% peanut vine and 55% whole-plant corn silage (MPG), and 65% peanut vine and 35% whole-plant corn silage (HPG), and the concentrate was the same for all four treatment diets. The results showed that compared to the WG group, the MPG group experienced an increase in their average daily feed intake of 14%, an average daily gain of 32%, and an increase in SOD activity in the spleen of 33%; in the meat, dry matter content increased by 11%, crude protein by 9%, and ether extract content by 40%; in the rumen, the NH3-N content was reduced by 36%, the relative abundance of Firmicutes increased, and the relative abundance of Bacteroidetes decreased (p < 0.05). These results showed the composition of 45% peanut vine and 55% whole-plant corn silage in the roughage improved growth performance, antioxidant capacity, meat quality, rumen fermentation, and microbiota of beef cattle.

4.
Nutrients ; 15(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686760

RESUMO

With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.


Assuntos
Anorexia , Eixo Encéfalo-Intestino , Humanos , Apetite , Obesidade , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA