Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Infect Drug Resist ; 17: 2873-2882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005855

RESUMO

Background: The purpose of this study was to identify bacterial differences between urine cultures (UC) and stone cultures (SC) in patients with complex kidney stones and to determine any correlation with post-percutaneous nephrolithotomy Systemic Inflammatory Response Syndrome (SIRS). Methods: Perioperative data of 1055 patients with complex kidney stones treated with first-stage Percutaneous Nephrolithotomy (PCNL) from September 2016 until September 2021 were included. Preoperative mid-stream urine samples and surgically obtained stone material were subjected to bacterial culture and antibiotic sensitivity tests. Preoperatively, antibiotic usage was determined by the UC or local bacterial resistance patterns. After PCNL treatment, antibiotic selection was guided by stone bacterial culture result and clinical symptoms. The effect of different preoperative antibiotic regimens based on urine cultures and postoperative antibiotic treatment based on stone cultures were assessed. Results: Positive stone cultures (SC+) were significantly more common than positive urine cultures (UC+) (31.9% vs 20.9%, p < 0.05). Escherichia coli (E. coli) was the most common uropathogen in both urine (54.3%) and stones (43.9%). The difference was statistically significant (p < 0.05). Moreover, UC+SC-, UC-SC+, UC+SC+, and preoperative serum creatinine were independent risk factors of postoperative SIRS. The incidence of SIRS in the UC+SC+ patients with different bacteria in stones and urine (51.6%) was higher than that in other culture groups. The antibiotic resistance of E. coli inside the stone was increased when prolonged preoperative antibiotics were administered to UC+ patients. Conclusion: The bacterial spectrum and positive outcome of culture in urine and stones were significantly different. The incidence of postoperative SIRS was highest in patients with UC+SC+ but with different bacteria strains. Prolonged pre-surgical antibiotic treatment apparently induced higher drug resistance for bacteria inside the stone.

2.
Biomater Res ; 28: 0014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549610

RESUMO

It is urgent to develop an alternative dynamic therapy-based method to overcome the limited efficacy of traditional therapy methods for bladder cancer and the damage caused to patients. Sonodynamic therapy (SDT) has the advantages of high tissue penetration, high spatiotemporal selectivity, and being non-invasive, representing an emerging method for eradicating deep solid tumors. However, the effectiveness of SDT is often hindered by the inefficient production of reactive oxygen species and the nondegradability of the sonosensitizer. To improve the anti-tumor effect of SDT on bladder cancer, herein, a BP-based heterojunction sonosensitizer (BFeSe2) was synthesized by anchoring FeSe2 onto BP via P-Se bonding to enhance the stability and the effect of SDT. As a result, BFeSe2 showed great cytotoxicity to bladder cancer cells under ultrasound (US) irradiation. BFeSe2 led to a notable inhibition effect on tumor growth in subcutaneous tumor models and orthotopic tumor models under US irradiation. In addition, BFeSe2 could also enhance T2-weighted magnetic resonance imaging (MRI) to achieve monitoring and guide treatment of bladder cancer. In general, BFeSe2 sonosensitizer integrates MRI functions for precise treatment, promising great clinical potential for the theranostics of bladder cancer.

4.
Clin Transl Sci ; 17(3): e13770, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501942

RESUMO

Renal fibrosis is a typical pathological change from chronic kidney disease (CKD) to end-stage renal failure, which presents significant challenges in prevention and treatment. The progression of renal fibrosis is closely associated with the "gut-kidney axis," therefore, although clinical intervention to modulate the "gut-kidney axis" imbalance associated with renal fibrosis brings hope for its treatment. In this study, we first identified the close relationship between renal fibrosis development and the intestinal microenvironment through fecal microtransplantation and non-absorbable antibiotics experiments. Then, we analyzed the specific connection between the intestinal microenvironment and renal fibrosis using microbiomics and metabolomics, screening for the differential intestinal metabolite. Potential metabolite action targets were initially identified through network simulation of molecular docking and further verified by molecular biology experiment. We used flow cytometry, TUNEL apoptosis staining, immunohistochemistry, and Western blotting to assess renal injury and fibrosis extent, exploring the potential role of gut microbial metabolite in renal fibrosis development. We discovered that CKD-triggered alterations in the intestinal microenvironment exacerbate renal injury and fibrosis. When metabolomic analysis was combined with experiments in vivo, we found that the differential metabolite xylitol delays renal injury and fibrosis development. We further validated this hypothesis at the cellular level. Mechanically, bromodomain-containing protein 4 (BRD4) protein exhibits strong binding with xylitol, and xylitol alleviates renal fibrosis by inhibiting BRD4 and its downstream transforming growth factor-ß (TGF-ß) pathway. In summary, our findings suggest that the natural intestinal metabolite xylitol mitigates renal fibrosis by inhibiting the BRD4-regulated TGF-ß pathway.


Assuntos
Proteínas Nucleares , Insuficiência Renal Crônica , Humanos , Xilitol , Simulação de Acoplamento Molecular , Fatores de Transcrição , Insuficiência Renal Crônica/tratamento farmacológico , Fibrose , Fator de Crescimento Transformador beta , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
5.
Cell Signal ; 116: 111057, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242268

RESUMO

Randall's plaque (RP) is derived from interstitial mineral deposition and is highly prevalent in renal calcium oxalate (CaOx) stone disease, which is predictive of recurrence. This study shows that histone deacetylase 6 (HDAC6) levels are suppressed in renal tubular epithelial cells in RP samples, in kidney tissues of hyperoxaluria rats, and in hyper-oxalate-treated or mineralized cultured renal tubular epithelial (MDCK) cells in vitro. Mineral deposition in MDCK cells was exacerbated by HDAC6 inhibition but alleviated by HDAC6 overexpression. Surprisingly, the expression of some osteogenic-associated proteins, were not increased along with the increasing of mineral deposition, and result of single-cell RNA sequencing of renal papillae samples revealed that epithelial cells possess lower calcific activity, suggesting that osteogenic-transdifferentiation may not have actually occurred in tubular epithelial cells despite mineral deposition. The initial mineral depositions facilitated by HDAC6 inhibitor were localized in extracellular dome rather than inside the cells, moreover, suppression of HDAC6 significantly increased the calcium content of co-cultured renal interstitial fibroblasts (NRK49F) and enhanced mineral deposition of indirectly co-cultured NRK49F cells, suggesting that HDAC6 may influence trans-MDCK monolayer secretion of mineral. Further experiments revealed that this regulatory role was partially alpha-tubulinLys40 acetylation dependent. Collectively, these results suggest that hyper-oxalate exposure led to HDAC6 suppression in renal tubular epithelial cells, which may contribute to interstitial mineral deposition by promoting alpha-tubulinLys40 acetylation. Therapeutic agents that influence HDAC6 activity may be beneficial in preventing RP and CaOx stone formation.


Assuntos
Nefropatias , Tubulina (Proteína) , Animais , Ratos , Acetilação , Oxalato de Cálcio , Células Epiteliais/metabolismo , Desacetilase 6 de Histona/metabolismo , Minerais , Tubulina (Proteína)/metabolismo
6.
ACS Omega ; 8(8): 7816-7828, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872978

RESUMO

Background: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. Methods: This study aims to explore the protective effects of four different sulfate groups (-OSO3 -) of Laminaria polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection. COM with a size of 230 ± 80 nm was used to damage HK-2 cells to establish a damage model. The protection capability of SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3 - contents of 0.73, 15, 23, and 31%, respectively, against COM crystal damage and the effect of SLPs on the endocytosis of COM crystals were studied. Results: Compared with that of the SLP-unprotected COM-injured group, the cell viability of the SLP-protected group was improved, healing capability was enhanced, cell morphology was restored, production of reactive oxygen species was reduced, mitochondrial membrane potential and lysosome integrity were increased, intracellular Ca2+ level and autophagy were decreased, cell mortality was reduced, and internalized COM crystals were lessened. The capability of SLPs to protect cells from damage and inhibit the endocytosis of crystals in cells enhanced with an increase in the -OSO3 - content of SLPs. Conclusions: SLPs with a high -OSO3 - content may become a potential green drug for preventing the formation of kidney stones.

7.
Small Methods ; 7(2): e2201313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599700

RESUMO

Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.


Assuntos
Nanoestruturas , Neoplasias da Bexiga Urinária , Humanos , Qualidade de Vida , Nanotecnologia/métodos , Medicina de Precisão , Portadores de Fármacos
8.
Biosens Bioelectron ; 220: 114854, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327902

RESUMO

Although serum prostate specific antigen (PSA) testing could decrease the morality of prostate cancer (PCa), its low specificity usually led to misdiagnosis due to prostatitis or benign prostatic hyperplasia (BPH). Prostate cancer antigen 3 (PCA3) as an alternative prostate tumor-specificity biomarker could be used to increase the specificity of PCa diagnosis, however, it usually required sophisticated operation and expensive equipment for routine detection. Herein, we constructed an early detection platform for prostate cancer with reverse transcriptase-recombinase aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 based nucleic acid test strip. The amplicons of PCA3 and kallikrein related peptidase 3 (KLK3) gene, which amplified simultaneously by single-amplification unit of RT-RAA were specifically recognized by Cas9-sgRNA and visual on the nucleic acid test strip by naked eyes without instruments. Simultaneously detection of PCA3 and KLK3 gene could improve specificity and accuracy of the diagnosis but avoid mutual interference. In addition, the platform presented a detection limit of 500 fg/µL and 50 fg/µL in PCA3 and KLK3 gene, respectively. Furthermore, the analysis result of signal ratio of PCA3 to KLK3 gene of urine and peripheral blood specimens from 32 men with suspected prostate cancer on test strips illustrated that the area under the curve values of urine and peripheral blood specimens were 0.998 and 1.0 respectively. In summary, our study highlighted a facile strategy to design an accurate prostate cancer gene detection platform which had the potential to conduct prostate cancer early detection in the resource-limited or other point-of-care testing (POCT) environments.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Antígenos de Neoplasias/genética , Próstata , Biomarcadores Tumorais/genética
9.
J Nanobiotechnology ; 20(1): 516, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482378

RESUMO

Oxidative stress damage to renal epithelial cells is the main pathological factor of calcium oxalate calculi formation. The development of medicine that could alleviate oxidative damage has become the key to the prevention and treatment of urolithiasis. Herein, porous nanorods CeO2 nanoparticles (CNPs) were selected from CeO2 with different morphologies as an antioxidant reagent to suppress kidney calcium oxalate crystal depositions with excellent oxidation resistance due to its larger specific surface area. The reversible transformation from Ce3+ to Ce4+ could catalyze the decomposition of excess free radicals and act as a biological antioxidant enzyme basing on its strong ability to scavenge free radicals. The protection capability of CNPS against oxalate-induced damage and the effect of CNPS on calcium oxalate crystallization were studied. CNPS could effectively reduce reactive oxygen species production, restore mitochondrial membrane potential polarity, recover cell cycle progression, reduce cell death, and inhibit the formation of calcium oxalate crystals on the cell surface in vitro. The results of high-throughput sequencing of mRNA showed that CNPs could protect renal epithelial cells from oxidative stress damage caused by high oxalate by suppressing the expression gene of cell surface adhesion proteins. In addition, CNPS can significantly reduce the pathological damage of renal tubules and inhibit the deposition of calcium oxalate crystals in rat kidneys while having no significant side effect on other organs and physiological indicators in vivo. Our results provide a new strategy for CNPS as a potential for clinical prevention of crystalline kidney injury and crystal deposition.


Assuntos
Oxalato de Cálcio , Rim , Estresse Oxidativo , Radicais Livres
10.
Front Immunol ; 13: 1008865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389789

RESUMO

Due to the molecular heterogeneity, most bladder cancer (BLCA) patients show no pathological responses to immunotherapy and chemotherapy yet suffer from their toxicity. This study identified and validated three distinct and stable molecular clusters of BLCA in cross-platform databases based on personalized immune and inflammatory characteristics. H&E-stained histopathology images confirmed the distinct infiltration of immune and inflammatory cells among clusters. Cluster-A was characterized by a favorable prognosis and low immune and inflammatory infiltration but showed the highest abundance of prognosis-related favorable immune cell and inflammatory activity. Cluster-B featured the worst prognosis and high immune infiltration, but numerous unfavorable immune cells exist. Cluster-C had a favorable prognosis and the highest immune and inflammatory infiltration. Based on machine learning, a highly precise predictive model (immune and inflammatory responses signature, IIRS), including FN1, IL10, MYC, CD247, and TLR2, was developed and validated to identify the high IIRS-score group that had a poor prognosis and advanced clinical characteristics. Compared to other published models, IIRS showed the highest AUC in 5 years of overall survival (OS) and a favorable predictive value in predicting 1- and 3- year OS. Moreover, IIRS showed an excellent performance in predicting immunotherapy and chemotherapy's response. According to immunohistochemistry and qRT-PCR, IIRS genes were differentially expressed between tumor tissues with corresponding normal or adjacent tissues. Finally, immunohistochemical and H&E-stained analyses were performed on the bladder tissues of 13 BLCA patients to further demonstrate that the IIRS score is a valid substitute for IIR patterns and can contribute to identifying patients with poor clinical and histopathology characteristics. In conclusion, we established a novel IIRS depicting an IIR pattern that could independently predict OS and acts as a highly precise predictive biomarker for advanced clinical characters and the responses to immunotherapy and chemotherapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Prognóstico , Bexiga Urinária , Imuno-Histoquímica , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA