Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951757

RESUMO

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Assuntos
Cromossomos Humanos Par 17 , Haplótipos , Heterozigoto , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Feminino , Cromossomos Humanos Par 17/genética , Gravidez , Adulto , Deleção Cromossômica , Sequenciamento do Exoma , Deleção de Sequência , Feto/anormalidades , Ultrassonografia Pré-Natal
2.
Front Med (Lausanne) ; 11: 1400694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933105

RESUMO

Background: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare autosomal dominant inheritable disease caused by Fumarate hydratase (FH) gene germline mutation. It is speculated that for HRLCC infertility women with multiple uterine leiomyomas, preimplantation genetic testing may help block transmission of mutated FH gene during pregnancy. Case presentation: We present the case of a 26-year-old nulligravida with a history of early-onset uterine leiomyomatosis had a heterozygous nonsense mutation [NM_000143.4 (FH): c.1027C > T(p.Arg343Ter)] in the HRLLC gene. After ovulation induction and in vitro fertilization, preimplantation genetic testing for monogenic disorders (PGT-M) on embryos revealed the absence of the pathogenic allele in two blastomeres. Uterine fibroids were identified before embryo transfer, leading to a submucosal myomectomy and long period of pituitary suppression by Gonadotropin-releasing hormone analog (GnRHa). The patient achieved a healthy live birth after the second cycle of frozen-thawed embryo transfer. Conclusion: This case details the successful treatment of an infertile patient with an HRLLC family history, resulting in a healthy birth through myomectomy and PGT-M selected embryo transplantation. Our literature search indicates the first reported live birth after HRLLC-PGT-M.

3.
J Craniofac Surg ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830018

RESUMO

There is currently a lack of scientific bibliometric analyses in the field of Pierre Robin sequence (PRS). Pierre Robin sequence is known for its clinical triad of micrognathia, glossoptosis, airway obstruction, and possible secondary cleft palate. These defects can lead to upper airway obstruction, sleep apnea, feeding difficulties, affect an individual's growth and development, education level, and in severe cases can be life-threatening. Through analysis of literature retrieved from the Web of Science Core Collection (WoSCC) database using Results Analysis and Citation Report and Citespace software, 933 original articles and reviews were included after manual screening. The overall trend for the number of annual publications and citations was increasing. On the basis of the analysis, airway evaluation and treatment, mandibular distraction osteogenesis (MDO), as well as descriptions of PRS characteristics have been the focus of research in this field. In addition, with advances in new technologies such as gene sequencing and expanding understanding of diseases among researchers, research on genetics and etiology related to PRS has become a growing trend.

4.
Orphanet J Rare Dis ; 19(1): 225, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844943

RESUMO

BACKGROUND: Infantile liver failure syndrome type 1 (ILFS1, OMIM #615,438), caused by leucyl-tRNA synthase 1 (LARS1, OMIM *151,350) deficiency, is a rare autosomal-recessive disorder. The clinical manifestations, molecular-genetic features, and prognosis of LARS1 disease remain largely elusive. METHODS: Three new instances of ILFS1 with confirmed variants in LARS1, encoding LARS1, were identified. Disease characteristics were summarized together with those of 33 reported cases. Kaplan-Meier analysis was performed to assess prognostic factors in ILFS1 patients. RESULTS: The 3 new ILFS1 patients harbored 6 novel variants in LARS1. Among the 36 known patients, 12 died or underwent liver transplantation. The main clinical features of ILFS1 were intrauterine growth restriction (31/32 patients in whom this finding was specifically described), failure to thrive (30/31), hypoalbuminemia (32/32), microcytic anemia (32/33), acute liver failure (24/34), neurodevelopmental delay (25/30), seizures (22/29), and muscular hypotonia (13/27). No significant correlations were observed between genotype and either presence of liver failure or clinical severity of disease. Kaplan-Meier analysis indicated that age of onset < 3mo (p = 0.0015, hazard ratio = 12.29, 95% confidence interval [CI] = 3.74-40.3), like liver failure (p = 0.0343, hazard ratio = 6.57, 95% CI = 1.96-22.0), conferred poor prognosis. CONCLUSIONS: Early age of presentation, like liver failure, confers poor prognosis in ILFS1. Genotype-phenotype correlations remain to be established.


Assuntos
Falência Hepática , Humanos , Feminino , Masculino , Lactente , Prognóstico , Falência Hepática/genética , Falência Hepática/patologia , Recém-Nascido , Falência Hepática Aguda/genética , Falência Hepática Aguda/mortalidade
5.
ACS Appl Mater Interfaces ; 16(27): 35074-35083, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38919051

RESUMO

The electrocatalytic conversion of formate in alkaline solutions is of paramount significance in the realm of fuel cell applications. Nonetheless, the adsorptive affinity of adsorbed hydrogen (Had) on the catalyst surface has traditionally impeded the catalytic efficiency of formate in such alkaline environments. To circumvent this challenge, our approach introduces an interfacial push-pull effect on the catalyst surface. This mechanism involves two primary actions: First, the anchoring of palladium (Pd) nanoparticles on a phosphorus-doped TiO2 substrate (Pd/TiO2-P) promotes the formation of electron-rich Pd with a downshifted d band center, thereby "pushing" the desorption of Had from the Pd active sites. Second, the TiO2-P support diminishes the energy barrier for Had transfer from the Pd sites to the support itself, "pulling" Had to effectively relocate from the Pd active sites to the support. The resultant Pd/TiO2-P catalyst showcases a remarkable mass activity of 4.38 A mgPd-1 and outperforms the Pd/TiO2 catalyst (2.39 A mgPd-1) by a factor of 1.83. This advancement not only surmounts a critical barrier in catalysis but also delineates a scalable pathway to bolster the efficacy of Pd-based catalysts in alkaline media.

6.
Environ Res ; 257: 119400, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866311

RESUMO

Most epidemiological studies on the associations between pesticides exposure and semen quality have been based on a single pesticide, with inconsistent major results. In contrast, there was limited human evidence on the potential effect of pesticides mixture on semen quality. Our study aimed to investigate the relationship of pesticide profiles with semen quality parameters among 299 non-occupationally exposed males aged 25-50 without any clinical abnormalities. Serum concentrations of 21 pesticides were quantified by gas chromatography-tandem mass spectrometry (GC-MS/MS). Semen quality parameters were abstracted from medical records. Generalized linear regression models (GLMs) and three mixture approaches, including weighted quantile sum regression (WQS), elastic net regression (ENR) and Bayesian kernel machine regression (BKMR), were applied to explore the single and mixed effects of pesticide exposure on semen quality. In GLMs, as the serum levels of Bendiocarb, ß-BHC, Clomazone, Dicrotophos, Dimethenamid, Paclobutrazole, Pentachloroaniline and Pyrimethanil increased, the straight-line velocity (VSL), linearity (LIN) and straightness (STR) decreased. This negative association also occurred between the concentration of ß-BHC, Pentachloroaniline, Pyrimethanil and progressive motility, total motility. In the WQS models, pesticides mixture was negatively associated with total motility and several sperm motility parameters (ß: -3.07∼-1.02 per decile, FDR-P<0.05). After screening the important pesticides derived from the mixture by ENR model, the BKMR models showed that the decreased qualities for VSL, LIN, and STR were also observed when pesticide mixtures were at ≥ 70th percentiles. Clomazone, Dimethenamid, and Pyrimethanil (Posterior inclusion probability, PIP: 0.2850-0.8900) were identified as relatively important contributors. The study provides evidence that exposure to single or mixed pesticide was associated with impaired semen quality.


Assuntos
Exposição Ambiental , Modelos Estatísticos , Praguicidas , Análise do Sêmen , Masculino , Humanos , Praguicidas/sangue , Praguicidas/toxicidade , Adulto , Exposição Ambiental/análise , Pessoa de Meia-Idade , Teorema de Bayes , Cromatografia Gasosa-Espectrometria de Massas
7.
Inorg Chem ; 63(17): 7886-7895, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38621298

RESUMO

In the quest for proficient electrocatalysts for ammonia's electrocatalytic nitrogen reduction, cobalt oxides, endowed with a rich d-electron reservoir, have emerged as frontrunners. Despite the previously evidenced prowess of CoO in this realm, its ammonia yield witnesses a pronounced decline as the reaction unfolds, a phenomenon linked to the electron attrition from its Co2+ active sites during electrocatalytic nitrogen reduction reaction (ENRR). To counteract this vulnerability, we harnessed electron-laden phosphorus (P) elements as dopants, aiming to recalibrate the electronic equilibrium of the pivotal Co active site, thereby bolstering both its catalytic performance and stability. Our empirical endeavors showcased the doped P-CoO's superior credentials: it delivered an impressive ammonia yield of 49.6 and, notably, a Faradaic efficiency (FE) of 9.6% at -0.2 V versus RHE, markedly eclipsing its undoped counterpart. Probing deeper, a suite of ex-situ techniques, complemented by rigorous theoretical evaluations, was deployed. This dual-pronged analysis unequivocally revealed CoO's propensity for an electron-driven valence metamorphosis to Co3+ post-ENRR. In stark contrast, P-CoO, fortified by P doping, exhibits a discernibly augmented ammonia yield. Crucially, P's intrinsic ability to staunch electron leakage from the active locus during ENRR ensures the preservation of the valence state, culminating in enhanced catalytic dynamism and fortitude. This investigation not only illuminates the intricacies of active site electronic modulation in ENRR but also charts a navigational beacon for further enhancements in this domain.

8.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634879

RESUMO

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

9.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652203

RESUMO

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Assuntos
Regulação da Expressão Gênica de Plantas , Olea , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Filogenia , Olea/genética , Olea/metabolismo , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Glucosídeos Iridoides/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Fosfato de Piridoxal/metabolismo , Iridoides/metabolismo , Genes de Plantas
10.
Clin Chim Acta ; 557: 117884, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522821

RESUMO

BACKGROUND: Copy number variation sequencing (CNV-seq) is crucial in prenatal diagnosis, but its limitations in detecting polyploidy, maternal cell contamination (MCC), and uniparental disomy (UPD) restrict its application in the analysis of products of conception (POCs). This study aimed to investigate an optimal genetic testing strategy for POCs in the era of CNV-seq. METHODS: CNV-seq and quantitative fluorescent polymerase chain reaction (QF-PCR) were performed in all 4,211 spontaneous miscarriage cases. Different testing strategies were compared and the optimal testing strategies were proposed. RESULTS: Of the 4,211 cases, 2561 (60.82%) exhibited clinically significant chromosomal abnormalities. CNV-seq alone, without QF-PCR, might misdiagnose 311 (7.39%) cases, including 278 polyploidy, 13 UPD, and 20 MCC. In 20 MCC cases identified by QF-PCR, CNV-seq successfully pinpointed the cause of miscarriage in 13 cases. Furthermore, in cases where QF-PCR suggested polyploidy, CNV-seq improved the diagnostic accuracy in 54 (1.28%) hypo/hypertriploidy cases. After comparing four different strategies, the sequential approach (initiating with CNV-seq followed by QF-PCR if necessary) emerged as advantageous, reducing approximately 70% of the cost associated with QF-PCR while maintaining result accuracy. CONCLUSIONS: We propose an initial CNV-seq followed by QF-PCR if needed-an efficient and cost-effective strategy for the genetic analysis of POCs.


Assuntos
Aborto Espontâneo , Transtornos Cromossômicos , Gravidez , Feminino , Humanos , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Aborto Espontâneo/diagnóstico , Aborto Espontâneo/genética , Cariotipagem , Aberrações Cromossômicas , Diagnóstico Pré-Natal , Poliploidia
11.
J Chem Inf Model ; 64(5): 1456-1472, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385768

RESUMO

Developing new drugs is too expensive and time -consuming. Accurately predicting the interaction between drugs and targets will likely change how the drug is discovered. Machine learning-based protein-ligand interaction prediction has demonstrated significant potential. In this paper, computational methods, focusing on sequence and structure to study protein-ligand interactions, are examined. Therefore, this paper starts by presenting an overview of the data sets applied in this area, as well as the various approaches applied for representing proteins and ligands. Then, sequence-based and structure-based classification criteria are subsequently utilized to categorize and summarize both the classical machine learning models and deep learning models employed in protein-ligand interaction studies. Moreover, the evaluation methods and interpretability of these models are proposed. Furthermore, delving into the diverse applications of protein-ligand interaction models in drug research is presented. Lastly, the current challenges and future directions in this field are addressed.


Assuntos
Aprendizado de Máquina , Proteínas , Ligantes , Proteínas/química
12.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392698

RESUMO

For photothermal therapy of cancer, it is necessary to find Ag @TiO2 core-shell nanoparticles that can freely tune the resonance wavelength within the near-infrared biological window. In this paper, the finite element method and the size-dependent refractive index of metal nanoparticles were used to theoretically investigate the effects of the core material, core length, core aspect ratio, shell thickness, refractive index of the surrounding medium, and the particle orientation on the light absorption properties of Ag@TiO2 core-shell nanospheroid and nanorod. The calculations show that the position and intensity of the light absorption resonance peaks can be freely tuned within the first and second biological windows by changing the above-mentioned parameters. Two laser wavelengths commonly used in photothermal therapy, 808 nm (first biological window) and 1064 nm (second biological window), were selected to optimize the core length and aspect ratio of Ag@TiO2 core-shell nanospheroid and nanorod. It was found that the optimized Ag@TiO2 core-shell nanospheroid has a stronger light absorption capacity at the laser wavelengths of 808 nm and 1064 nm. The optimized Ag@TiO2 core-shell nanoparticles can be used as ideal therapeutic agents in photothermal therapy.

13.
Small ; 20(27): e2311124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38258393

RESUMO

The electrochemical nitrogen oxidation reaction (NOR) holds significant potential to revolutionize the traditional nitrate synthesis processes. However, the progression in NOR has been notably stymied due to the sluggish kinetics of initial N2 adsorption and activation processes. Herein, the research embarks on the development of a CeO2-Co3O4 heterostructure, strategically engineered to facilitate the electron transfer from CeO2 to Co3O4. This orchestrated transfer operates to amplify the d-band center of the Co active sites, thereby enhancing N2 adsorption and activation dynamics by strengthening the Co─N bond and diminishing the resilience of the N≡N bond. The synthesized CeO2-Co3O4 manifests promising prospects, showcasing a significant HNO3 yield of 37.96 µg h-1 mgcat -1 and an elevated Faradaic efficiency (FE) of 29.30% in a 0.1 m Na2SO4 solution at 1.81 V versus RHE. Further substantiating these findings, an array of in situ methodologies coupled with DFT calculations vividly illustrate the augmented adsorption and activation of N2 on the surface of CeO2-Co3O4 heterostructure, resulting in a substantial reduction in the energy barrier pertinent to the rate-determining step within the NOR pathway. This research carves a promising pathway to amplify N2 adsorption throughout the electrochemical NOR operations and delineates a blueprint for crafting highly efficient NOR electrocatalysts.

14.
J Phys Chem Lett ; 15(1): 281-289, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38166444

RESUMO

The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are crucial for the conversion of clean energy. Recently, dual-metal-site catalysts (DMSCs) have gained much attention due to their high atom utilization, stronger stability, and better catalytic performance. An advanced method that combines density functional theory (DFT) and machine learning (ML) has been employed in this study to investigate the adsorption free energies of adsorbates on hundreds of potential catalysts, with the aim of screening for catalysts that are highly active for the ORR and OER. The result of this study is that 30 DMSCs with ORR activity superior to Pt, 10 DMSCs with OER activity superior to RuO2, and 4 bifunctional catalysts for the OER and ORR are identified. This work provides guidance for the rational selection of metals on DMSCs to prepare catalysts with a high electrocatalytic performance for renewable energy applications.

15.
Protein Cell ; 15(1): 52-68, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37294900

RESUMO

Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.


Assuntos
Fissura Palatina , Cardiopatias Congênitas , Deficiência Intelectual , Feminino , Animais , Camundongos , Humanos , Pré-Escolar , Deficiência Intelectual/genética , Cardiopatias Congênitas/genética , Fácies , Hipotonia Muscular
16.
Instr Course Lect ; 73: 247-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38090902

RESUMO

The cavus foot represents a complex spectrum of deformity ranging from the subtle idiopathic to the severe sensorimotor neuropathy and other neuromuscular deformities. The successful surgical treatment of the cavus foot depends on a fundamental understanding of the underlying multiplanar deformity, inherent muscle balance, and the rigidity of the hindfoot. The location of the deformity is described and understood according to its multiple apices. These deformities are addressed with osteotomies or arthrodesis directed at the apices of deformity. Simultaneously, correction of muscular imbalances with appropriate tendon transfers must also be performed to prevent recurrent deformity. With these principles in mind, the surgical correction of the cavus foot becomes simplified and algorithmically driven.


Assuntos
Deformidades do Pé , Pé Cavo , Humanos , Pé Cavo/cirurgia , Deformidades do Pé/cirurgia , , Artrodese , Osteotomia
17.
Clin Chem ; 69(11): 1295-1306, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37932106

RESUMO

BACKGROUND: Population-wide carrier screening for spinal muscular atrophy (SMA) is recommended by professional organizations to facilitate informed reproductive options. However, genetic screening for SMN1 2 + 0 carriers, accounting for 3%-8% of all SMA carriers, has been challenging due to the large gene size and long distance between the 2 SMN genes. METHODS: Here we repurposed a previously developed long-read sequencing-based approach, termed comprehensive analysis of SMA (CASMA), to identify SMN1 2 + 0 carriers through haplotype analysis in family trios (CASMA-trio). Bioinformatics pipelines were developed for accurate haplotype analysis and SMN1 2 + 0 deduction. Seventy-nine subjects from 24 families composed of, at the minimum, 3 were enrolled, and CASMA-trio was employed to determine whether an index subject with 2 SMN1 copies was a 2 + 0 carrier in these families. For the proof-of-principle, SMN2 2 + 0 was also analyzed. RESULTS: Among the 16 subjects with 2 SMN1 copies, CASMA-trio identified 5 subjects from 4 families as SMN1 2 + 0 carriers, which was consistent with pedigree analysis involving an affected proband. CASMA-trio also identified SMN2 2 + 0 in six out of 43 subjects with 2 SMN2 copies. Additionally, CASMA-trio successfully determined the distribution pattern of SMN1 and SMN2 genes on 2 alleles in all 79 subjects. CONCLUSIONS: CASMA-trio represents an effective and universal approach for SMN1 2 + 0 carriers screening, as it does not reply on the presence of an affected proband, certain single-nucleotide polymorphisms, ethnicity-specific haplotypes, or complicated single-nucleotide polymorphism analysis across 3 generations. Incorporating CASMA-trio into existing SMA carrier screening programs will greatly reduce residual risk ratio.


Assuntos
Testes Genéticos , Atrofia Muscular Espinal , Humanos , Dosagem de Genes , Atrofia Muscular Espinal/genética , Alelos , Haplótipos , Proteína 1 de Sobrevivência do Neurônio Motor/genética
18.
J Clin Lab Anal ; 37(21-22): e24985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37950500

RESUMO

BACKGROUND: Aloin has cardioprotective effects, however, its cardioprotective role in sepsis remains unclear. This study aimed to analyze whether aloin could prevent sepsis-related myocardial damage and explore the underlying mechanisms by examining the expression of long-noncoding RNA (lncRNA) SNHG1 and microRNA-21 (miR-21). METHODS: The interaction of SNHG1 with miR-21 was identified by dual-luciferase reporter assay. The levels of SNHG1 and miR-21 were measured by real-time quantitative PCR. The cardioprotective function of aloin was assessed in a sepsis animal model, which was induced by cecal ligation and puncture, and in a myocardial injury cell model in H9C2 cells stimulated by lipopolysaccharide. Myocardial injury biomarker levels and hemodynamic indicators in mice model were measured to evaluate cardiac function. The viability of H9C2 cells was assessed by cell counting kit-8 assay. Inflammatory cytokine levels were examined by an ELISA method. RESULTS: Decreased SNHG1 and increased miR-21 were found in sepsis patients with cardiac dysfunction, and they were negatively correlated. Aloin significantly attenuated myocardial damage and inflammatory responses of mice model, and increased the viability and suppressed inflammation in H9C2 cell model. In addition, SNHG1 expression was upregulated and miR-21 expression was downregulated by aloin in both mice and cell models. Moreover, in mice and cell models, SNHG1/miR-21 axis affected sepsis-related myocardial damage, and mediated the cardioprotective effects of aloin. CONCLUSION: Our findings indicated that aloin exerts protective effects in sepsis-related myocardial damage through regulating cardiac cell viability and inflammatory responses via regulating the SNHG1/miR-21 axis.


Assuntos
Emodina , MicroRNAs , RNA Longo não Codificante , Sepse , Animais , Humanos , Camundongos , Apoptose , Sobrevivência Celular/genética , Emodina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sepse/complicações , Sepse/genética
19.
J Ovarian Res ; 16(1): 205, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858138

RESUMO

BACKGROUND: The immune system played a multifaceted role in ovarian cancer (OC) and was a significant mediator of ovarian carcinogenesis. Various immune cells and immune gene products played an integrated role in ovarian cancer (OC) progression, proved the significance of the immune microenvironment in prognosis. Therefore, we aimed to establish and validate an immune gene prognostic signature for OC patients' prognosis prediction. METHODS: Differently expressed Immune-related genes (DEIRGs) were identified in 428 OC and 77 normal ovary tissue specimens from 9 independent GEO datasets. The Cancer Genome Atlas (TCGA) cohort was used as a training cohort, Univariate Cox analysis was used to identify prognostic DEIRGs in TCGA cohort. Then, an immune gene-based risk model for prognosis prediction was constructed using the LASSO regression analysis, and validated the accuracy and stability of the model in 374 and 93 OC patients in TCGA training cohort and International Cancer Genome Consortium (ICGC) validation cohort respectively. Finally, the correlation among risk score model, clinicopathological parameters, and immune cell infiltration were analyzed. RESULTS: Five DEIRGs were identified to establish the immune gene signature and divided OC patients into the low- and high-risk groups. In TCGA and ICGC datasets, patients in the low-risk group showed a substantially higher survival rate than high-risk group. Receiver operating characteristic (ROC) curves, t-distributed stochastic neighbor embedding (t-SNE) analysis and principal component analysis (PCA) showed the good performance of the risk model. Clinicopathological correlation analysis proved the risk score model could serve as an independent prognostic factor in 2 independent datasets. CONCLUSIONS: The prognostic model based on immune-related genes can function as a superior prognostic indicator for OC patients, which could provide evidence for individualized treatment and clinical decision making.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Prognóstico , Carcinogênese , Medição de Risco , Microambiente Tumoral/genética
20.
J Chem Inf Model ; 63(20): 6249-6260, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37807535

RESUMO

The structured material synthesis route is crucial for chemists in performing experiments and modern applications such as machine learning material design. With the exponential growth of the chemical literature in recent years, manual extraction from the published literature is time-consuming and labor-intensive. This study focuses on developing an automated method for extracting Pd-based catalyst synthesis routes from the chemical literature. First, a paragraph classification model based on regular expressions is employed to identify paragraphs that contain material synthesis processes. The identified paragraphs are verified using machine learning techniques. Second, natural language processing techniques are applied to automatically parse the material synthesis routes from the identified paragraphs, generate regularized flowcharts, and output structured data. Lastly, we utilized the structured data of the synthesis routes to train machine learning models and predict the performance of the materials. The extracted material entities include the product, preparation method, precursor, support, loading, synthesis operation, and operation condition. This method avoids extensive manual data annotation and improves the scientific literature information acquisition efficiency. The accuracy of the 11 material entities exceeds 80%, and the accuracy of the method, support, precursor, drying time, and reduction time exceeds 90%.


Assuntos
Metanol , Vapor , Aprendizado de Máquina , Processamento de Linguagem Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA