Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
2.
Shock ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38662604

RESUMO

OBJECTIVES: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. METHODS: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the weighted gene coexpression network analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. ScRNA-seq data were also analysed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. RESULTS: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by TTM could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability and cell proliferation as well as the immune status of the host. CONCLUSION: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, while the correlation between copper and the observed changes in GLS requires further investigation.

3.
Neurotoxicology ; 102: 81-95, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599287

RESUMO

BACKGROUND: Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS: Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS: TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS: NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.


Assuntos
Animais Recém-Nascidos , Apoptose , Exossomos , Células-Tronco Mesenquimais , Propofol , Ratos Sprague-Dawley , Animais , Propofol/toxicidade , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Linhagem Celular Tumoral , Sangue Fetal
4.
Biofabrication ; 16(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569491

RESUMO

Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.


Assuntos
Bioimpressão , Impressão Tridimensional , Traumatismos da Medula Espinal , Alicerces Teciduais , Traumatismos da Medula Espinal/terapia , Bioimpressão/métodos , Humanos , Animais , Alicerces Teciduais/química , Engenharia Tecidual , Materiais Biocompatíveis/química
5.
Int J Biol Sci ; 20(4): 1452-1470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385075

RESUMO

A growing number of studies have revealed an association between proteasome activator complex subunit 2 (PSME2) and the progression of various forms of cancer. However, the effect of PSME2 on osteosarcoma progression is unknown. Pan-cancer analyses focused on the immunological activity and prognostic relevance of PSME2 have yet to be conducted. The Cancer Genome Atlas and Genome-Tissue Expression databases were leveraged to evaluate PSME2 expression and activity across 33 cancer types. Significant PSME2 dysregulation was noted in a wide range of cancer types and this gene was found to offer significant diagnostic and prognostic utility in most analyzed cancers. From a mechanistic perspective, PSME2 expression levels were correlated with DNA methylation, DNA repair, genomic instability, and TME scores in multiple cancer types. PSME2 was subsequently established as a pan-cancer biomarker of M1 macrophage infiltration based on a combination of bulk, single-cell, and spatial transcriptomic data and confirmatory fluorescent staining results. In osteosarcoma cells, overexpressing PSME2 significantly suppressed tumor proliferative, migratory, and invasive activity. Screening efforts also successfully identified the PSME2-activating drug irinotecan, which can synergistically promote the death of osteosarcoma cells when combined with the chemotherapeutic drug paclitaxel. As a biomarker of M1 macrophage infiltration, PSME2 expression levels may offer insight into tumor development and progression for a wide range of cancers including osteosarcoma, emphasizing its potential utility as a prognostic and therapeutic target worthy of further study.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Fenótipo , Biomarcadores Tumorais/genética , Macrófagos , Neoplasias Ósseas/genética , Complexo de Endopeptidases do Proteassoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-38347779

RESUMO

OBJECTIVE: Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS: A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS: lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silencing of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION: Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.

8.
World J Gastroenterol ; 29(40): 5582-5592, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970473

RESUMO

BACKGROUND: Programmed death 1 (PD-1) and CD4+CD25+FoxP3+ expression in peripheral blood T-cells has been previously reported in various types of cancer. However, the specific variation tendency during surgery and chemotherapy, as well as their relationship in gastric cancer patients, still remain unclear. Understanding this aspect may provide some novel insights for future studies on tumor recurrence and tumor immune escape, and also serve as a reference for determining the optimal timing and dose of clinical anti-PD-1 antibodies. AIM: To observe and analyze the expression characteristics of peripheral lymphocyte PD-1 and FoxP3+ regulatory T cells (FoxP3+ Tregs) before and after surgery or chemotherapy in gastric cancer patients. METHODS: Twenty-nine stomach cancer patients undergoing chemotherapy after a D2 gastrectomy provided 10 mL peripheral blood samples at each phase of the perioperative period and during chemotherapy. This study also included 29 age-matched healthy donors as a control group. PD-1 expression was detected on lymphocytes, including CD4+CD8+CD45RO+, CD4+CD45RO+, and CD8+CD45RO+ lymphocytes as well as regulatory T cells. RESULTS: We observed a significant increase of PD-1 expression on immune subsets and a larger number of FoxP3+ Tregs in gastric cancer patients (P < 0.05). Following D2 gastrectomy, peripheral lymphocytes PD-1 expression and the number of FoxP3+ Tregs notably decrease (P < 0.05). However, during postoperative chemotherapy, we only observed a decrease in PD-1 expression on lymphocytes in the CD8+CD45RO+ and CD8+CD45RO+ populations. Additionally, linear correlation analysis indicated a positive correlation between PD-1 expression and the number of CD4+CD45RO+FoxP3high activated Tregs (aTregs) on the total peripheral lymphocytes (r = 0.5622, P < 0.0001). CONCLUSION: The observed alterations in PD-1 expression and the activation of regulatory T cells during gastric cancer treatment may offer novel insights for future investigations into tumor immune evasion and the clinical application of anti-PD-1 antibodies in gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Receptor de Morte Celular Programada 1/metabolismo , Recidiva Local de Neoplasia/patologia , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo
9.
World J Gastrointest Oncol ; 15(9): 1616-1625, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746642

RESUMO

BACKGROUND: The multidisciplinary team (MDT) has been carried out in many large hospitals now. However, given the costs of time and money and with little strong evidence of MDT effectiveness being reported, critiques of MDTs persist. AIM: To evaluate the effects of MDTs on patients with synchronous colorectal liver metastases and share our opinion on management of synchronous colorectal liver metastases. METHODS: In this study we collected clinical data of patients with synchronous colorectal liver metastases from February 2014 to February 2017 in the Chinese People's Liberation Army General Hospital and subsequently divided them into an MDT+ group and an MDT- group. In total, 93 patients in MDT+ group and 169 patients in MDT- group were included totally. RESULTS: Statistical increases in the rate of chest computed tomography examination (P = 0.001), abdomen magnetic resonance imaging examination (P = 0.000), and preoperative image staging (P = 0.0000) were observed in patients in MDT+ group. Additionally, the proportion of patients receiving chemotherapy (P = 0.019) and curative resection (P = 0.042) was also higher in MDT+ group. Multivariable analysis showed that the population of patients assessed by MDT meetings had higher 1-year [hazard ratio (HR) = 0.608, 95% confidence interval (CI): 0.398-0.931, P = 0.022] and 5-year (HR = 0.694, 95%CI: 0.515-0.937, P = 0.017) overall survival. CONCLUSION: These results proved that MDT management did bring patients with synchronous colorectal liver metastases more opportunities for comprehensive examination and treatment, resulting in better outcomes.

10.
Int J Biol Macromol ; 248: 125841, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479204

RESUMO

Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.


Assuntos
Nematoides , Oryza , Animais , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Oryza/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética
11.
Front Plant Sci ; 14: 1137299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063174

RESUMO

Rice is a crucial food crop worldwide, but its yield and quality are significantly affected by Meloidogyne graminicola is a root knot nematode. No rice variety is entirely immune to this nematode disease in agricultural production. Thus, the fundamental strategy to combat this disease is to utilize rice resistance genes. In this study, we conducted transcriptome and metabolome analyses on two rice varieties, ZH11 and IR64. The results indicated that ZH11 showed stronger resistance than IR64. Transcriptome analysis revealed that the change in gene expression in ZH11 was more substantial than that in IR64 after M. graminicola infection. Moreover, GO and KEGG enrichment analysis of the upregulated genes in ZH11 showed that they were primarily associated with rice cell wall construction, carbohydrate metabolism, and secondary metabolism relating to disease resistance, which effectively enhanced the resistance of ZH11. However, in rice IR64, the number of genes enriched in disease resistance pathways was significantly lower than that in ZH11, which further explained susceptibility to IR64. Metabolome analysis revealed that the metabolites detected in ZH11 were enriched in flavonoid metabolism and the pentose phosphate pathway, compared to IR64, after M. graminicola infection. The comprehensive analysis of transcriptome and metabolome data indicated that flavonoid metabolism plays a crucial role in rice resistance to M. graminicola infection. The content of kaempferin, apigenin, and quercetin in ZH11 significantly increased after M. graminicola infection, and the expression of genes involved in the synthetic pathway of flavonoids also significantly increased in ZH11. Our study provides theoretical guidance for the precise analysis of rice resistance and disease resistance breeding in further research.

12.
World J Gastrointest Oncol ; 15(2): 332-342, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36908321

RESUMO

BACKGROUND: The overexpression of the MYC gene plays an important role in the occurrence, development and evolution of colorectal cancer (CRC). Bromodomain and extraterminal domain (BET) inhibitors can decrease the function BET by recognizing acetylated lysine residues, thereby downregulating the expression of MYC. AIM: To investigate the inhibitory effect and mechanism of a BET inhibitor on CRC cells. METHODS: The effect of the BET inhibitor JAB-8263 on the proliferation of various CRC cell lines was studied by CellTiter-Glo method and colony formation assay. The effect of JAB-8263 on the cell cycle and apoptosis of CRC cells was studied by propidium iodide staining and Annexin V/propidium iodide flow assay, respectively. The effect of JAB-8263 on the expression of c-MYC, p21 and p16 in CRC cells was detected by western blotting assay. The anti-tumor effect of JAB-8263 on CRC cells in vivo and evaluation of the safety of the compound was predicted by constructing a CRC cell animal tumor model. RESULTS: JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro. The MYC signaling pathway was dose-dependently inhibited by JAB-8263 in human CRC cell lines. JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. SW837 xenograft model was treated with JAB-8263 (0.3 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P < 0.001). The MC38 syngeneic murine model was treated with JAB-8263 (0.2 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P = 0.003). CONCLUSION: BET could be a potential effective drug target for suppressing CRC growth, and the BET inhibitor JAB-8263 can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.

13.
STAR Protoc ; 4(1): 102009, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36633952

RESUMO

Despite the unique switching characteristics of CO2-responsive foaming, its stability remains questionable. In this protocol, we describe steps to synthesize a stable CO2-responsive foam by adding the preferably selected hydrophilic nanoparticle N20 into the surfactant C12A. We detail the selection of the most suitable nanoparticles for the surfactant by measuring the foaming volume and half-life of the dispersion. The protocol can be extended to manufacture with other types of responsive foams (e.g., light responsive foams, magnetic responsive foams). For complete details on the use and execution of this protocol, please refer to Li et al. (2022).1.


Assuntos
Dióxido de Carbono , Tensoativos
14.
ACS Appl Mater Interfaces ; 14(45): 51510-51518, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36332191

RESUMO

Programmable metamaterials are suitable for their dynamic and real-time control capabilities of electromagnetic (EM) functions in radars and antenna communications, but it remains a challenge to achieve dynamic modulation of arbitrary transmission phase with high transmission efficiency. Here, we propose a paradigm to tailor transmission phase shift in real time by switching modes between waveguide and SSPP based on the voltage-driven PIN diodes. Step-like phase shift is achieved by the "ON" and "OFF" states of PIN diodes, while continuous phase regulation is by the characteristic of the nonlinear region between those two states. As validations, three systems with programmable functionalities are implemented, including the multibeam generator, the dual-beam scanner, and the active phased-array antenna. The experimental results are consistent with simulation, which verify the feasibility of the proposed approach. Our work offers an alternative route for transmission full-phase modulation and provides unprecedented potential for high-gain, real-time, and multidimensional EM capabilities in applications such as active phased array radars, self-adaption radomes, smart beam shaping.

15.
Front Biosci (Landmark Ed) ; 27(9): 272, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36224016

RESUMO

BACKGROUND: Autophagy plays a pivotal role in the progression and management of colorectal cancer (CRC). Recently, numerous articles focusing on the role of autophagy in CRC have emerged. The present study was conducted to provide a comprehensive analysis of the current state and changing trends in the relationship of autophagy and CRC over the past 20 years. METHODS: The Web of Science Core Collection (WOSCC) was utilized to extracted all publications with respect to autophagy and CRC during 2002-2021. The contributions of various countries/regions, institutions and journals in this field were analyzed, moreover, research hotspots and promising future trends predicted through keywords were identified by the online platform of bibliometrics, CiteSpace and VOSviewer. RESULTS: A total of 2418 related publications from 2002 to 2021 were identified and collected. China occupied first place with respect to the number of publications, followed by the USA and South Korea. Shanghai Jiao Tong University published the most papers in this field. Most publications were published in Oncotarget. Additionally, analysis of the keywords identified 4 clusters with various research focuses: "mechanism-related research", "clinical-related research", "tumorigenesis research" and "chemotherapy-related research". The three latest hot keywords in this field were epithelial-mesenchymal transition (EMT), promote and invasion. CONCLUSIONS: The number of publications and research interest on autophagy and CRC are increasing annually, and the USA had prominent academic positions in the field. Shanghai Jiao Tong University represents a high level of research and the latest progress in this field can be tracked at Oncotarget. Throughout the research history of autophagy and CRC in the past 20 years, previous studies have mainly concentrated on apoptosis and drug resistance in tumor cells, while EMT in regulating tumorigenesis and development of clinical drugs that inhibit tumor invasion through autophagy may be novel hotspots in the future.


Assuntos
Bibliometria , Neoplasias Colorretais , Autofagia , Carcinogênese , China , Humanos
16.
Opt Express ; 30(11): 20014-20025, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221762

RESUMO

Polarization, as an important property of light, has been widely discussed in modern detecting and radar systems. A polarization converter that can be used to achieve dynamic control is regarded as an excellent alternative for implementing the integrated functionalities of communication and stealth. In this work, we propose a paradigm of meta-converter for dynamic polarization states shifting from linear-to-linear (LTL) to linear-to-circular (LTC) polarization. The strategy is achieved by loading voltage-controlled PIN diodes on the double-arrows metallic meta-resonators. The operation modes can be switched by changing the bias voltage. When the PIN diodes are turned on, the polarization meta-converter (PMC) will reflect and convert a linearly polarized electromagnetic (EM) wave into a circularly polarized one in 5.6-15.5 GHz with an axial ratio (AR) below 3dB. When the PIN diodes are turned off, the PMC will reflect and convert a linearly polarized EM wave into the orthogonal counterpart in 7.6-15.5 GHz with a polarization conversion ratio (PCR) over 88%. Simulations and experimental results show a good agreement, which manifests the feasibility of our proposed meta-converter. Moreover, the proposed PMC has great potential for polarization-dependent communication and stealth systems.

17.
Front Oncol ; 12: 969628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263224

RESUMO

Early gastric cancer (EGC) has a desirable prognosis compared with advanced gastric cancer (AGC). The surgical concept of EGC has altered from simply emphasizing radical resection to both radical resection and functional preservation. As the mainstream surgical methods for EGC, both endoscopic resection and laparoscopic resection have certain inherent limitations, while the advent of laparoscopic and endoscopic cooperative surgery (LECS) has overcome these limitations to a considerable extent. LECS not only expands the surgical indications for endoscopic resection, but greatly improves the quality of life (QOL) in EGC patients. This minireview elaborates on the research status of LECS for EGC, from the conception and development of LECS, to the tentative application of LECS in animal experiments, then to case reports and retrospective clinical studies. Finally, the challenges and prospects of LECS in the field of EGC are prospected and expounded, hoping to provide some references for relevant researchers. With the in-depth understanding of minimally invasive technology, LECS remains a promising option in the management of EGC. Carrying out more related multicenter prospective clinical researches is the top priority of promoting the development of this field in the future.

18.
Proc Natl Acad Sci U S A ; 119(43): e2209218119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252031

RESUMO

Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.


Assuntos
Neoplasias Gástricas , Humanos , Silício , Neoplasias Gástricas/diagnóstico
19.
Front Oncol ; 12: 947658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110958

RESUMO

Background: Chemotherapy, radiotherapy, targeted therapy and immunotherapy have demonstrated expected clinical efficacy, while drug resistance remains the predominant limiting factor to therapeutic failure in patients with colorectal cancer (CRC). Although there have been numerous basic and clinical studies on CRC resistance in recent years, few publications utilized the bibliometric method to evaluate this field. The objective of current study was to provide a comprehensive analysis of the current state and changing trends of drug resistance in CRC over the past 20 years. Methods: The Web of Science Core Collection (WOSCC) was utilized to extracted all studies regarding drug resistance in CRC during 2002-2021. CiteSpace and online platform of bibliometrics were used to evaluate the contributions of various countries/regions, institutions, authors and journals in this field. Moreover, the recent research hotspots and promising future trends were identified through keywords analysis by CiteSpace and VOSviewer. Results: 1451 related publications from 2002 to 2021 in total were identified and collected. The number of global publications in this field has increased annually. China and the USA occupied the top two places with respect to the number of publications, contributing more than 60% of global publications. Sun Yat-sen University and Oncotarget were the institution and journal which published the most papers, respectively. Bardelli A from Italy was the most prolific writer and had the highest H-index. Keywords burst analysis identified that "Growth factor receptor", "induced apoptosis" and "panitumumab" were the ones with higher burst strength in the early stage of this field. Analysis of keyword emergence time showed that "oxaliplatin resistance", "MicroRNA" and "epithelial mesenchymal transition (EMT)" were the keywords with later average appearing year (AAY). Conclusions: The number of publications and research interest on drug resistance in CRC have been increasing annually. The USA and China were the main driver and professor Bardelli A was the most outstanding researcher in this field. Previous studies have mainly concentrated on growth factor receptor and induced apoptosis. Oxaliplatin resistance, microRNA and EMT as recently appeared frontiers of research that should be closely tracked in the future.

20.
J Med Microbiol ; 71(9)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36136380

RESUMO

Introduction. Colorectal cancer (CRC) is one of the most common cancers and poses heavy burden on global health. The relationship between mucosal microbiome composition and colorectal gene expression are rarely studied. In this study, we integrated transcriptome data with microbiome data to investigate the relationship between them in colorectal cancer patients.Gap statement. Previous studies have identified the contribution of gut microbiota and DEGs to the pathogenesis of CRC, but the relationship between mucosal microbiome composition and colorectal gene expression are rarely studied.Aim. In this study, we integrated transcriptome data with microbiome data to investigate the relationship between mucosal microbiome composition and colorectal gene expression.Methodology. First, three independent CRC gene expression profiles (GSE184093, GSE156355 and GSE146587) from Gene Expression Omnibus (GEO) were used to identify differentially expressed genes (DEGs). Second, another dataset (GSE163366) was used to analyse gut mucosal microbiome differential abundance. GO (Gene Ontology) function and KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway enrichment analyses of the DEGs were performed. Protein-protein interactions (PPIs) of the DEGs were constructed. The Spearman correlation analysis was computed between host DEGs and gut microbiome abundance data.Results. A total of 1036 upregulated DEGs and 1194 downregulated DEGs between noncancerous tissues and cancerous tissues were identified based on the analysis. One significant module with a score 37.65 was selected out via MCODE including 41 upregulated DEGs, which are were mostly enriched in two pathways, including microtubule binding and tubulin binding. In particular, significant negative correlations are prevalent between Fusobacterium and the 41 DEGs with the correlation ranging between -0.54 and -0.35, and there commonly exist significant positive correlations between Blautia and the 41 DEGs with the correlation ranging between 0.42 and 0.54, indicating that Fusobacterium and Blautia are two of the most important microbes interacting with the gene regulation.Conclusion. Our results demonstrate significant correlation between some gut microbes and DEGs, providing a comprehensive bioinformatics analysis of them for future investigation into the molecular mechanisms and biomarkers.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Mapas de Interação de Proteínas/genética , Transcriptoma , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA