Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 25: 783-795, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37056277

RESUMO

Chemotherapy remains the mainstay of cancer treatment, benefiting millions of patients each year, but the side effects of chemotherapy drugs severely limit their clinical use. Doxorubicin (DOX) can cause various side effects such as heart damage and treatment-related tumors. The effective use of active and passive targeting will improve the clinical application of DOX. Here, TPGS3350 and bioactive peptides were utilized to construct a micelle-based stage-by-stage impelled efficient system (missiles) for DOX delivery (DOX missiles). By taking advantage of the EPR effect, DOX missiles are efficiently enriched at the tumor site. After being cleaved by matrix metalloproteinase2 (MMP2), the peptide (VRGD) targets tumor cells to facilitate uptake of the missiles by the tumor cells via receptor-mediated endocytosis. The intracellular activated caspase-3-catalyzed explosion of DOX missiles further enables efficient tumor killing. This study provides an efficient approach for DOX delivery and toxicity reduction.

2.
Adv Sci (Weinh) ; 10(16): e2206707, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066748

RESUMO

Patients with triple-negative breast cancer (TNBC) have the worst clinical outcomes when compared to other subtypes of breast cancer. Nanotechnology-assisted photothermal therapy (PTT) opens new opportunities for precise cancer treatment. However, thermoresistance caused by PTT, as well as uncertainty in the physiological metabolism of existing phototherapeutic nanoformulations, severely limit their clinical applications. Herein, based on the clinically chemotherapeutic drug mitoxantrone (MTO), a multifunctional nanoplatform (MTO-micelles) is developed to realize mutually synergistic mild-photothermal chemotherapy. MTO with excellent near-infrared absorption (≈669 nm) can function not only as a chemotherapeutic agent but also as a photothermal transduction agent with elevated photothermal conversion efficacy (ƞ = 54.62%). MTO-micelles can accumulate at the tumor site through the enhanced permeability and retention effect. Following local near-infrared irradiation, mild hyperthermia (<50 °C) assists MTO in binding tumor cell DNA, resulting in chemotherapeutic sensitization. In addition, downregulation of heat shock protein 70 (HSP70) expression due to enhanced DNA damage can in turn weaken tumor thermoresistance, boosting the efficacy of mild PTT. Both in vitro and in vivo studies indicate that MTO-micelles possess excellent synergetic tumor inhibition effects. Therefore, the mild-photothermal chemotherapy strategy based on MTO-micelles has a promising prospect in the clinical transformation of TNBC treatment.


Assuntos
Mitoxantrona , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Micelas , Proteínas de Choque Térmico HSP70 , Fototerapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA