Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731977

RESUMO

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Assuntos
Movimento Celular , Proliferação de Células , Exossomos , Queratinócitos , Células-Tronco Mesenquimais , Geleia de Wharton , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Fibrinogênio/metabolismo , Proteômica/métodos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Cicatrização , Proteoma/metabolismo
2.
Biomedicines ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672131

RESUMO

Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.

3.
J Psychiatr Res ; 172: 229-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412785

RESUMO

The mRNA markers identified using microarray assay and diffusion tensor magnetic resonance imaging (DTI) were applied to elucidate the pathophysiology of attention-deficit hyperactivity disorder (ADHD). First, we obtained total RNA from leukocytes from three children with ADHD and three healthy controls for analysis with microarray assays. Subsequently, we applied real-time quantitative polymerase chain reaction (qRT‒PCR) assays to validate the differential expression of 7 genes (COX7B, CYCS, TFAM, UTP14A, ZNF280C, IFT57 and NDUFB5) between 130 ADHD patients and 70 controls, and we built an ADHD prediction model based on the ΔCt values of aforementioned seven genes (AUROC = 0.98). Finally, in a validation group (28 patients with ADHD and 27 healthy controls), mRNA expression of the above seven genes also significantly differentiated ADHD patients from controls (AUROC value = 0.91). The DTI analysis showed increased fractional anisotropy (FA) of the forceps minor, superior corona radiata, posterior corona radiata and anterior corona radiata in ADHD patients. Moreover, the FA of the right superior corona radiata tract was positively correlated with ΔCt levels of the COX7B gene and the IFT57 gene. The results shed a new light on a genetic profile of ADHD that may help in deciphering the white matter microstructural features in disease pathogenesis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Branca , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transcriptoma , Substância Branca/patologia , RNA Mensageiro , Anisotropia
4.
Mod Pathol ; 37(3): 100427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219951

RESUMO

The understanding of schwannoma tumorigenesis has been reshaped by the recent identification of SH3PXD2A::HTRA1 fusion in 10% of intracranial/spinal schwannomas. Nonetheless, pathologic features of schwannomas harboring this fusion, as well as its prevalence outside intracranial/spinal locations, have not been characterized. We screened 215 consecutive schwannomas for their clinicopathologic characteristics and fusion status using reverse-transcriptase polymerase chain reaction (RT-PCR). Among 29 (13.5%) fusion-positive schwannomas, the most prevalent location was peripheral somatic tissue (30.7%, 19/62), followed by spinal/paraspinal (18.4%, 7/38), body cavity/deep structures (10%, 2/20), intracranial (1.3%, 1/75), and viscera (0/13). All 8 cellular, 4 microcystic/reticular, and 3 epithelioid schwannomas were fusion-negative, as were 41/42 nonschwannomatous peripheral nerve sheath tumors. Remarkably, a distinct 'serpentine' palisading pattern, comprising ovoid/plump cells shorter than usual schwannian cells in a hyalinized stroma, was identified in most fusion-positive cases and the schwannomatous component of the only fusion-positive malignant peripheral nerve sheath tumor. To validate this finding, 60 additional cases were collected, including 36 with (≥10% arbitrarily) and 24 without appreciable serpentine histology, of which 29 (80.6%) and 2 (8.3%) harbored the fusion, respectively. With percentages of 'serpentine' areas scored, 10% was determined as the optimal practical cut-off to predict the fusion status (sensitivity, 0.950; specificity, 0.943). Fusion positivity was significantly associated with serpentine histology, smaller tumors, younger patients, and peripheral somatic tissue, while multivariate logistic linear regression analysis only identified serpentine histology and location as independent fusion-predicting factors. RNA in situ hybridization successfully detected the fusion junction, highly concordant with RT-PCR results. Gene expression profiling on 18 schwannomas demonstrated segregation largely consistent with fusion status. Fusion-positive cases expressed significantly higher HTRA1 mRNA abundance, perhaps exploitable as a biomarker. In summary, we systematically characterize a series of 60 SH3PXD2A::HTRA1 fusion-positive schwannomas, showing their distinctive morphology and location-specific prevalence for the first time.


Assuntos
Neoplasias de Bainha Neural , Neurilemoma , Humanos , Neurilemoma/patologia , Neoplasias de Bainha Neural/patologia , Transformação Celular Neoplásica , Proteínas Adaptadoras de Transporte Vesicular
5.
J Radiat Res ; 65(1): 55-62, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37996087

RESUMO

Radiation-induced gastrointestinal damage is a common acute radiation syndrome. Previous studies have highlighted that Galectin-1 and Interleukin-6 (IL-6) are associated with flaking of small intestinal villi and intestinal radioresistance. Therefore, our goal is to study whether gut bacteria regulated by galectin-1 or IL-6 can mitigate radiation-induced small intestine damage. In this study, differences between galectin-1, sgp130-regulated and wild-type (WT) mice were analyzed by microbiome array. The effects of the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of bacterial distribution at the phylum level were observed after 18 Gy whole abdomen radiation. Fecal microbiota transplantation was used to implant radioresistant gut flora into WT mice, and the number of viable small intestinal crypt foci was observed by immunohistochemistry. Fecal transplantation from galectin-1 knockout and sgp130 transgenic mice, with higher radiation resistance, into WT mice significantly increased the number of surviving small intestinal crypts. This radiation resistance, generated through gene regulation, was not affected by the F/B ratio. We initially found that the small intestinal villi of WT mice receiving radioresistant mouse fecal bacteria demonstrated better repair outcomes after radiation exposure. These results indicate the need for a focus on the identification and application of superior radioresistant bacterial strains. In our laboratory, we will further investigate specific radioresistant bacterial strains to alleviate acute side effects of radiation therapy to improve the patients' immune ability and postoperative quality of life.


Assuntos
Galectina 1 , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Galectina 1/farmacologia , Interleucina-6/farmacologia , Receptor gp130 de Citocina , Qualidade de Vida , Intestino Delgado
6.
BMC Microbiol ; 23(1): 198, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495951

RESUMO

BACKGROUND: Acanthamoeba castellanii is a free-living protist that feeds on diverse bacteria. A. castellanii has frequently been utilized in studies on microbial interactions. Grazing bacteria also exhibit diverse effects on the physiological characteristics of amoebae, such as their growth, encystation, and cytotoxicity. Since the composition of amoebae amino acids is closely related to cellular activities, it can indicate the overall responses of A. castellanii to various stimuli. METHOD: A. castellanii was exposed to different culture conditions in low-nutrient medium with heat-killed DH5α to clarify their effects. A targeted metabolomic technique was utilized to evaluate the concentration of cellular amino acids. The amino acid composition and pathways were analyzed by two web-based tools: MetaboAnalyst and Pathview. Then, long-term exposure to A. castellanii was investigated through in silico and in vitro methods to elucidate the homeostasis of amino acids and the growth of A. castellanii. RESULTS: Under short-term exposure, all kinds of amino acids were enriched in all exposed groups. In contrast to the presence of heat-killed bacteria, the medium exhibited obvious effects on the amino acid composition of A. castellanii. After long-term exposure, the amino acid composition was more similar to that of the control group. A. castellanii may achieve amino acid homeostasis through pathways related to alanine, aspartate, citrulline, and serine. DISCUSSION: Under short-term exposure, compared to the presence of bacteria, the type of medium exerted a more powerful effect on the amino acid composition of the amoeba. Previous studies focused on the interaction of the amoeba and bacteria with effective secretion systems and effectors. This may have caused the effects of low-nutrient environments to be overlooked. CONCLUSION: When A. castellanii was stimulated in the coculture system through various methods, such as the presence of bacteria and a low-nutrient environment, it accumulated intracellular amino acids within a short period. However, different stimulations correspond to different amino acid compositions. After long-term exposure, A. castellanii achieved an amino acid equilibrium by downregulating the biosynthesis of several amino acids.


Assuntos
Acanthamoeba castellanii , Aminoácidos , Escherichia coli , Acanthamoeba castellanii/química , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/fisiologia , Técnicas de Cocultura , Aminoácidos/análise , Aclimatação , Temperatura Alta , Meios de Cultura
7.
Pediatr Pulmonol ; 58(10): 2777-2785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37470110

RESUMO

BACKGROUND: Patients with congenital orofacial defects, cleft lip (CL), cleft palate (CP), and cleft lip and palate (CLP) have continuous exposure of the respiratory system to the microbiome from the oral environment, offering opportunities to develop mucosal immunity in the airway. This two-part study aims to analyze data on asthma occurrence in CL, CP, and CLP infants and the composition of the salivary microbiome, and to evaluate the oral microbiota and its association with the risk of developing childhood asthma. METHODS: Patient data from the research database of Chang Gung Memorial Hospital from 2004 to 2015 were retrospectively analyzed by multivariable regression. Diseases diagnoses were defined by ICD codes. Asthma must also meet the criteria for receiving selective ß2 agonistic or/and inhaled corticosteroid treatments twice within 1 year. Analysis of the saliva microbiome was performed prospectively from 2016 to 2020 in 10 healthy term infants and 10 CLP infants on postnatal 7th day, 1 month, and 6 months by next-generation sequencing. RESULTS: Asthma and nonasthma groups included 988 and 3952 patients, respectively. The incidence of asthma development was higher in patients with CP than in CL and CLP groups (aOR: 5.644, CI: 1.423-22.376). The species composition of the microbiome at 1 and 6 months was significantly different between infants with CLP and healthy infants. CONCLUSION: Children with orofacial defects have a higher risk of developing asthma with a possible contribution from oral microbiota in the early months of life.


Assuntos
Asma , Fenda Labial , Fissura Palatina , Lactente , Humanos , Criança , Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Estudos Retrospectivos , Asma/epidemiologia
8.
J Child Psychol Psychiatry ; 64(9): 1280-1291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37016804

RESUMO

BACKGROUND: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. METHODS: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples and the internal transcribed spacer regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. RESULTS: The ß-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and a significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. CONCLUSIONS: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Micobioma , Criança , Humanos , Disbiose/microbiologia , Células CACO-2 , Candida/genética
10.
Children (Basel) ; 10(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36980071

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a commonly seen mental disorder in children. Intestinal permeability may be associated with the pathogenesis of ADHD. The study herein investigated the role of gut leakage biomarkers in the susceptibility of ADHD. A total of 130 children with ADHD and 73 healthy controls (HC) individuals were recruited. Serum concentrations of zonulin, occludin, and defensin (DEFA1) were determined. Visual attention was assessed with Conners' continuous performance test (CPT). In order to rate participants' ADHD core symptoms at home and school, their parents and teachers completed the Swanson, Nolan, and Pelham-Version IV Scale (SNAP-IV), respectively. We found significantly lower DEFA1 levels in the ADHD group compared to that in the HC group (p = 0.008), but not serum levels of zonulin and occludin. The serum levels of DEFA1 showed an inverse correlation with the inattention scores in the SNAP-IV parent form (p = 0.042) and teacher form (p = 0.010), and the hyperactivity/impulsivity scores in the SNAP-IV teacher form (p = 0.014). The serum levels of occludin showed a positive correlation with the subtest of detectability in the CPT (p = 0.020). Our study provides new reference into the relation between gut leakage markers and cognition, which may advance research of the pathophysiology of ADHD.

11.
Sci Rep ; 13(1): 4903, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966172

RESUMO

Neonates who are born preterm (PT) are usually characterized by immature physiological development, and preterm birth (PTB) is the leading cause of neonatal morbidity and mortality if intensive medical care is not available to PTB neonates. Early prediction of a PTB enables medical personnel to make preparations in advance, protecting the neonate from the subsequent health risks. Therefore, many studies have worked on identifying invasive or noninvasive PT biomarkers. In this study, we collected amniocentesis-derived (at the second trimester of gestation) amniotic fluid (AF) samples. At delivery, AF samples were classified into PTB or full-term birth (FTB). We first applied protein mass spectrometry technology to globally screen AF proteins, followed by specific protein validation with ELISA. We identified four protein biomarkers of PTB, including lactotransferrin (LTF), glutathione-disulfide reductase (GSR), myeloperoxidase (MPO) and superoxide dismutase 2 (SOD2). Further analyses demonstrated that their abundances were negatively correlated with neonatal weight and gestational age. In addition, by mimicking survival rate analysis widely used in tumor biology, we found that LTF and SOD2 were prognostic factors of gestational age, with higher levels denoting shorter gestational age. Finally, using the abundances of the four protein biomarkers, we developed a prediction model of PTB with an auROC value of 0.935 (sensitivity = 0.94, specificity = 0.89, p value = 0.0001). This study demonstrated that the abundances of specific proteins in amniotic fluid were not only the prognostic factors of gestational age but also the predictive biomarkers of PTB. These four AF proteins enable identification of PTB early in the second trimester of gestation, facilitating medical intervention to be applied in advance.


Assuntos
Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/metabolismo , Líquido Amniótico/metabolismo , Idade Gestacional , Lactoferrina/metabolismo , Biomarcadores/metabolismo , Nascimento a Termo
12.
Brain Behav ; 13(3): e2897, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748983

RESUMO

INTRODUCTION: Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood-brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. METHODS: We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5-azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. RESULT: The promoter methylation and 5-azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration-dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. CONCLUSION: We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Proteínas S100 , Humanos , Proteínas S100/genética , Proteínas S100/metabolismo , Proteínas de Ciclo Celular/genética , Epigênese Genética , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Autoanticorpos/metabolismo , Azacitidina
13.
Cells ; 11(21)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359746

RESUMO

INTRODUCTION: Several environmental stimuli may influence lupus, particularly viral infections. In this study, we used an imiquimod-induced lupus mouse model focused on the TLR7 pathway and proteomics analysis to determine the specific pathway related to viral infection and the related protein expressions in splenic B cells to obtain insight into B-cell responses to viral infection in the lupus model. MATERIALS AND METHODS: We treated FVB/N wild-type mice with imiquimod for 8 weeks to induce lupus symptoms and signs, retrieved splenocytes, selected B cells, and conducted the proteomic analysis. The B cells were co-cultured with CD40L+ feeder cells for another week before performing Western blot analysis. Panther pathway analysis was used to disclose the pathways activated and the protein-protein interactome was analyzed by the STRING database in this lupus murine model. RESULTS: The lupus model was well established and well demonstrated with serology evidence and pathology proof of lupus-mimicking organ damage. Proteomics data of splenic B cells revealed that the most important activated pathways (fold enrichment > 100) demonstrated positive regulation of the MDA5 signaling pathway, negative regulation of IP-10 production, negative regulation of chemokine (C-X-C motif) ligand 2 production, and positive regulation of the RIG-I signaling pathway. A unique protein-protein interactome containing 10 genes was discovered, within which ISG15, IFIH1, IFIT1, DDX60, and DHX58 were demonstrated to be downstream effectors of MDA5 signaling. Finally, we found B-cell intracellular cytosolic proteins via Western blot experiment and continued to observe MDA5-related pathway activation. CONCLUSION: In this experiment, we confirmed that the B cells in the lupus murine model focusing on the TLR7 pathway were activated through the MDA5 signaling pathway, an important RNA sensor implicated in the detection of viral infections and autoimmunity. The MDA5 agonist/antagonist RNAs and the detailed molecular interactions within B cells are worthy of further investigation for lupus therapy.


Assuntos
Helicase IFIH1 Induzida por Interferon , Viroses , Animais , Camundongos , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Imiquimode/farmacologia , Proteômica , Transdução de Sinais , Receptor 7 Toll-Like , Viroses/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Lúpus Eritematoso Sistêmico/induzido quimicamente
14.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361563

RESUMO

Coronary artery lesions (CAL) are a major complication of Kawasaki disease (KD). The early prediction of CAL enables the medical personnel to apply adequate medical intervention. We collected the serum samples from the KD patients with CAL (n = 32) and those without CAL (n = 31), followed by a global screening with isobaric tagging for relative and absolute quantification (iTRAQ) technology and specific validation with an enzyme-linked immunosorbent assay (ELISA). iTRAQ identified 846 proteins in total in the serum samples, and four candidate proteins related to CAL were selected for ELISA validation as follows: Protein S100-A4 (S100A4), Catalase (CAT), Folate receptor gamma (FOLR3), and Galectin 10 (CLC). ELISA validation showed that the S100A4 level was significantly higher in KD patients with CAL than in those without CAL (225.2 ± 209.5 vs. 143.3 ± 83 pg/mL, p < 0.05). In addition, KD patients with CAL had a significantly lower CAT level than those without CAL (1.6 ± 1.5 vs. 2.7 ± 2.3 ng/mL, p < 0.05). Next, we found that S100A4 treatment on human coronary artery endothelial cells (HCAECs) reduced the abundance of cell junction proteins, which promoted the migration of HCAECs. Further assays also demonstrated that S100A4 treatment enhanced the permeability of the endothelial layer. These results concluded that S100A4 treatment resulted in an incompact endothelial layer and made HCAECs more susceptible to in vitro neutrophil infiltration. In addition, both upregulated S100A4 and downregulated CAT increased the risk of CAL in KD. Further in vitro study implied that S100A4 could be a potential therapeutic target for CAL in KD.


Assuntos
Doença da Artéria Coronariana , Síndrome de Linfonodos Mucocutâneos , Humanos , Síndrome de Linfonodos Mucocutâneos/complicações , Vasos Coronários/patologia , Infiltração de Neutrófilos , Células Endoteliais/patologia , Proteômica , Biomarcadores , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/etiologia , Proteína A4 de Ligação a Cálcio da Família S100
15.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628491

RESUMO

Placenta accreta spectrum (PAS) accounts for 7% of maternal mortality and is associated with intraoperative and postoperative morbidity caused by massive blood loss, infection, and adjacent organ damage. The aims of this study were to identify the protein biomarkers of PAS and to further explore their pathogenetic roles in PAS. For this purpose, we collected five placentas from pregnant subjects with PAS complications and another five placentas from normal pregnancy (NP) cases. Then, we enriched protein samples by specifically isolating the trophoblast villous, deeply invading into the uterine muscle layer in the PAS patients. Next, fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-TOF/MS were used to identify the proteins differentially abundant between PAS and NP placenta tissues. As a result, nineteen spots were determined as differentially abundant proteins, ten and nine of which were more abundant in PAS and NP placenta tissues, respectively. Then, specific validation with western blot assay and immunohisto/cytochemistry (IHC) assay confirmed that heat shock 70 kDa protein 4 (HSPA4) and chorionic somatomammotropin hormone (CSH) were PAS protein biomarkers. Further tube formation assays demonstrated that HSPA4 promoted the in vitro angiogenesis ability of vessel endothelial cells, which is consistent with the in vivo scenario of PAS complications. In this study, we not only identified PAS protein biomarkers but also connected the promoted angiogenesis with placenta invasion, investigating the pathogenetic mechanism of PAS.


Assuntos
Proteínas de Choque Térmico HSP110 , Placenta Acreta , Biomarcadores , Cesárea , Células Endoteliais/patologia , Feminino , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Placenta/patologia , Placenta Acreta/patologia , Placenta Acreta/cirurgia , Gravidez
16.
Transl Psychiatry ; 12(1): 76, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197458

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1ß, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and ß-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Microbioma Gastrointestinal , Criança , Citocinas/genética , Disbiose , Microbioma Gastrointestinal/genética , Humanos , Filogenia
17.
Transl Psychiatry ; 12(1): 67, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184133

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , MicroRNAs , Apoptose , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Biomarcadores , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Neurônios
18.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055107

RESUMO

Psoriatic arthritis (PsA) results from joint destruction by osteoclasts. The promising efficacy of TNF-α blockage indicates its important role in osteoclastogenesis of PsA. WNT ligands actively regulate osteoclastogenesis. We investigated how WNT ligands activate osteoclasts amid the TNF-α milieu in PsA. We first profiled the expression of WNT ligands in CD14+ monocyte-derived osteoclasts (MDOC) from five PsA patients and five healthy controls (HC) and then validated the candidate WNT ligands in 32 PsA patients and 16 HC. Through RNA interference against WNT ligands in MDOC, we determined the mechanisms by which TNF-α exerts its effects on osteclastogenesis or chemotaxis. WNT5A was selectively upregulated by TNF-α in MDOC from PsA patients. The number of CD68+WNT5A+ osteoclasts increased in PsA joints. CXCL1, CXCL16, and MCP-1 was selectively increased in supernatants of MDOC from PsA patients. RNA interference against WNT5A abolished the increased MCP-1 from MDOC and THP-1-cell-derived osteoclasts. The increased migration of osteoclast precursors (OCP) induced by supernatant from PsA MDOC was abolished by the MCP-1 neutralizing antibody. WNT5A and MCP-1 expressions were decreased in MDOC from PsA patients treated by biologics against TNF-α but not IL-17. We conclude that TNF-α recruits OCP by increased MCP-1 production but does not directly activate osteoclastogenesis in PsA.


Assuntos
Artrite Psoriásica/patologia , Quimiocina CCL2/metabolismo , Osteoclastos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Wnt-5a/metabolismo , Adulto , Artrite Psoriásica/metabolismo , Estudos de Casos e Controles , Movimento Celular , Quimiocina CCL2/genética , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoclastos/citologia , Osteoclastos/metabolismo , Células THP-1 , Regulação para Cima , Proteína Wnt-5a/genética
19.
J Diabetes Investig ; 13(1): 201-208, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34255930

RESUMO

AIMS/INTRODUCTION: Identifying diabetes-susceptible genetic variants will help to provide personalized therapy for the management of type 2 diabetes. Previous studies have reported a genetic risk score (GRS), computed by the sum of nuclear DNA (nDNA) risk alleles, that may predict the future requirement for insulin therapy. Although mitochondrial dysfunction has a close association with insulin resistance (IR), there are few studies investigating whether genetic variants of mitochondrial DNA (mtDNA) will affect the clinical characteristics of type 2 diabetes. MATERIALS AND METHODS: Mitochondrial haplogroups were determined using mtDNA whole genome next generation sequencing and 13 single nucleotide polymorphisms (SNPs) in nDNA susceptibility loci of 13 genes in 604 Taiwanese subjects with type 2 diabetes. A GRS of nDNA was computed by summation of the number of risk alleles. The correlation between the mtDNA haplogroup and the clinical characteristics of type 2 diabetes was assessed by logistic regression analysis. The results were compared with the GRS subgroups for the risk of insulin requirement. RESULTS: Mitochondrial haplogroups modulate the clinical characteristics of type 2 diabetes, in which patients harboring haplogroup D4, compared with those harboring non-D4 haplotypes, were less prone to require insulin treatment, after adjusting for age, gender, and diabetes duration. However, there was no association between insulin requirement and GRS calculated from nuclear genetic variants. CONCLUSIONS: Mitochondrial haplogroups, but not nuclear genetic variants, have a better association with the insulin requirement. The results highlight the role of mitochondria in the management of common metabolic diseases.


Assuntos
DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Resistência à Insulina/genética , Povo Asiático/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único , Taiwan/etnologia
20.
World J Biol Psychiatry ; 23(7): 537-547, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34870552

RESUMO

OBJECTIVES: Schizophrenia is a serious mental illness. The serum protein biomarkers of schizophrenia were explored using isobaric tags for relative and absolute quantitation (iTRAQ) technology. The underlying function of the identified protein biomarker was also investigated. METHODS: We first collected serum samples from 12 schizophrenia patients and 12 healthy control (HC) subjects, followed by global screening with iTRAQ and tandem mass spectrometry (LC-MS/MS). In total, 691 serum proteins were detected and eight proteins, including ZYX, OSCAR, TPM4, SDPR, BST1, ARGHDB, ITIH5 and SH3BGRL3, were selected for further specific validation with enzyme-linked immunosorbent assay (ELISA) on the serum samples from 52 schizophrenia patients and 50 HC subjects. RESULTS: Schizophrenia patients had significantly lower serum level of BST1 and higher ITIH5 level than the HC subjects did. Using the levels of BST1, ITIH5 and OSCAR combined with machine learning algorithm, we developed a prediction model of schizophrenia with an auROC value 0.78. Moreover, in vitro cell assay confirmed that BST1 significantly repressed neutrophil infiltration through endothelial layer, highlighted the anti-inflammation nature of BST1. CONCLUSIONS: Four novel protein markers (BST1, ITIH5, SDPR, and OSCAR) of schizophrenia were identified, and BST-1 could serve as a serum protein biomarker involved in neutrophil infiltration in schizophrenia.


Assuntos
ADP-Ribosil Ciclase , Esquizofrenia , Espectrometria de Massas em Tandem , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida/métodos , Infiltração de Neutrófilos , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , ADP-Ribosil Ciclase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA