Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Rep ; 15(1): 56, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34007449

RESUMO

An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver.

2.
Mol Med Rep ; 22(3): 2415-2423, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705253

RESUMO

NADPH oxidase 2 (NOX2) is a major subtype of NOX and is responsible for the generation of reactive oxygen species (ROS) in brain tissues. MicroRNAs (miRNAs/miRs) are important epigenetic regulators of NOX2. The present study aimed to identify the role of NOX2 miRNA­targets in ischemic stroke (IS). A rat cerebral ischemia/reperfusion (CI/R) injury model and a SH­SY5Y cell hypoxia/reoxygenation (H/R) model were used to simulate IS. Gene expression levels, ROS production and apoptosis in tissue or cells were determined, and bioinformatic analysis was conducted for target prediction of miRNA. In vitro experiments, including function­gain and luciferase activity assays, were also performed to assess the roles of miRNAs. The results indicated that NOX2 was significantly increased in brain tissues subjected to I/R and in SH­SY5Y cells subjected to H/R, while the expression of miR­532­3p (putative target of NOX2) was significantly decreased in brain tissues and plasma. Overexpression of miR­532­3p significantly suppressed NOX2 expression and ROS generation in SH­SY5Y cells subjected to H/R, as well as reduced the relative luciferase activity of cells transfected with a reporter gene plasmid. Collectively, these data indicated that miR­532­3p may be a target of NOX2 and a biomarker for CI/R injury. Thus, the present study may provide a novel target for drug development and IS therapy.


Assuntos
Isquemia Encefálica/genética , MicroRNAs/genética , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regiões 3' não Traduzidas , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Masculino , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30150475

RESUMO

Voriconazole is a broad-spectrum triazole antifungal and the first-line treatment for invasive aspergillosis (IA). The aim of this research was to study the dose adjustments of voriconazole as well as the affecting factors influencing voriconazole trough concentrations in Asian children to optimize its daily administration. Clinical data were analyzed of inpatients 2 to 14 years old who were subjected to voriconazole trough concentration monitoring from 1 June 2015 to 1 December 2017. A total of 138 voriconazole trough concentrations from 42 pediatric patients were included. Voriconazole trough concentrations at steady state ranged from 0.02 to 9.35 mg/liter, with high inter- and intraindividual variability. Only 50.0% of children achieved the target range (1.0 to 5.5 mg/liter) at initial dosing, while 35.7% of children were subtherapeutic, and 14.3% of children were supratherapeutic at initial dosing. There was no correlation between initial trough concentrations and initial dosing. A total of 28.6% of children (12/42) received an adjusted dose according to trough concentrations. Children <6, 6 to 12, and >12 years old required a median oral maintenance dose to achieve the target range of 11.1, 7.2, and 5.3 mg/kg twice daily, respectively (P = 0.043). The average doses required to achieved the target range were 7.7 mg/kg and 5.6 mg/kg, respectively, and were lower than the recommended dosage (P = 0.033 and 0.003, respectively). Affecting factors such as administration routes and coadministration with proton pump inhibitors (PPIs) explained 55.3% of the variability in voriconazole exposure. Therapeutic drug monitoring (TDM) of voriconazole could help to individualize antifungal therapy for children and provide guidelines for TDM and dosing optimization in Asian children.


Assuntos
Antifúngicos/farmacocinética , Aspergilose/tratamento farmacológico , Monitoramento de Medicamentos , Micoses/tratamento farmacológico , Voriconazol/farmacocinética , Adolescente , Antifúngicos/sangue , Antifúngicos/farmacologia , Aspergilose/sangue , Aspergilose/microbiologia , Aspergilose/patologia , Criança , Pré-Escolar , China , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Lactente , Masculino , Micoses/sangue , Micoses/microbiologia , Micoses/patologia , Centros de Atenção Terciária , Voriconazol/sangue , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA