RESUMO
Glutathione (GSH) exhibits considerable potential in the cosmetic industry for reducing intracellular tyrosinase activity and inhibiting melanin synthesis. However, its efficacy is hindered by limited permeability, restricting its ability to reach the basal layer of the skin where melanin production occurs. The transdermal enhancer peptide TD1 has emerged as a promising strategy to facilitate the transdermal transfer of proteins or peptides by creating intercellular gaps in keratinocytes, providing access to the basal layer. The primary objective of this study is to enhance the transdermal absorption capacity of GSH while augmenting its inhibitory effect on melanin. Two coupling structures were designed for investigation: linear (TD1-linker-GSH) and branched (TD1-GSH). The study examined the impact of the peptide skeleton on melanin inhibition ability. Our findings revealed that the linear structure not only inhibited synthetic melanin production in B16F10 cells through a direct pathway but also through a paracrine pathway, demonstrating a significant tyrosinase inhibition of nearly 70 %, attributed to the paracrine effect of human keratinocyte HaCaT. In pigmentation models of guinea pigs and zebrafish, the application of TD1-linker-GSH significantly reduced pigmentation. Notably, electric two-photon microscopy demonstrated that TD1-linker-GSH exhibited significant transdermal ability, penetrating 158.67 ± 9.28 µm into the skin of living guinea pigs. Molecular docking analysis of the binding activity with tyrosinase revealed that both TD1-linker-GSH and TD1-GSH occupy the same active pocket, with TD1-linker-GSH binding more tightly to tyrosinase. These results provide a potential foundation for therapeutic approaches aimed at enriched pigmentation and advance our understanding of the mechanisms underlying melanogenesis inhibition.
Assuntos
Administração Cutânea , Glutationa , Melaninas , Monofenol Mono-Oxigenase , Peixe-Zebra , Melaninas/metabolismo , Animais , Humanos , Cobaias , Glutationa/metabolismo , Glutationa/química , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Peptídeos/administração & dosagem , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/administração & dosagem , MelanogêneseRESUMO
In order to systematically study the synergistic effect of gas hydrate inhibition with mixtures of methanol (MeOH) and magnesium chloride (MgCl2), the impact of these compounds on the thermodynamic stability of methane hydrate in the systems of CH4-MeOH-H2O, CH4-MgCl2-H2O, and CH4-MeOH-MgCl2-H2O was experimentally investigated. The pressure and temperature conditions of the three-phase vapor-aqueous solution-gas hydrate equilibrium were determined for these systems. The resulting dataset has 164 equilibrium points within the range of 234-289 K and 3-13 MPa. All equilibrium points were measured as the endpoint of methane hydrate dissociation during the heating stage. The phase boundaries of methane hydrate were identified for 8 systems with MeOH (up to 60 mass%), 5 MgCl2 solutions (up to 26.7 mass%), and 14 mixtures of both inhibitors. Most equilibrium points were measured using a ramp heating technique (0.1 K/h) under isochoric conditions when the fluids were stirred at 600 rpm. It was found that even a 0.5 K/h heating rate for the CH4-MgCl2-H2O system at low salt concentrations, along with all mixed aqueous solutions with methanol, gives results that do not differ from 0.1 K/h, considering the measurement uncertainties. Most measurements for the CH4-MgCl2-H2O system at high salt content were acquired using a step heating technique. The coefficients of the empirical equations approximating the equilibrium points for each inhibitor concentration were defined. The change in the slope parameter of the empirical equation was analyzed as a function of inhibitor content. Correlations that accurately describe the thermodynamic inhibition effect of methane hydrate with methanol and magnesium chloride on a mass% and mol% scale were obtained. The freezing temperatures of single and mixed aqueous solutions of methanol and magnesium chloride were determined experimentally to confirm the thermodynamic consistency of the methane hydrate equilibrium data.
RESUMO
Lewis acid zeolites play an important role in industrially important green reactions closely related to fine chemical and biomass conversion. Titanium-doped TS-1 zeolite is a milestone Lewis acid zeolite widely used in industrially significant green oxidation processes with hydrogen peroxide as an oxidant under mild conditions. TS-1 zeolites are normally synthesized in basic conditions under hydrothermal treatment. Up to now, there has still been no success in synthesizing active TS-1 Lewis acid zeolites by using inorganic alkali, e.g., NaOH or KOH as base, which is cheaper and more stable compared to the quaternary ammonium hydroxide or organic amines used in traditional synthesis. Here, an inorganic base of NaOH was employed in synthesizing active TS-1 zeolites for the first time. The crucial factor was the control of adverse effects of sodium cations on the incorporation of active titanium cations. Higher catalytic activity was achieved by further reducing the size of the TS-1 crystal by using the seed-added strategy, which uses the catalytic activity of a commercial catalyst, the production cost being much lower than commercial TS-1 catalysts, indicating great commercial potential and the possibility of preparing other cheap Lewis acid catalysts by using inorganic alkali.
RESUMO
Titanium silicalite-1 (TS-1) is a milestone heterogeneous catalyst with single-atom tetrahedral titanium incorporated into silica framework for green oxidation reactions. Although TS-1 catalysts have been industrialized, the strategy of direct hydrothermal synthesis usually produces catalysts with low catalytic activities, which has still puzzled academic and industrial scientists. Post-treatment processes were widely chosen and were proven to be an essential process for the stable production of the high-activity zeolites with hollow structures. However, the reasons why post-treatment processes could improve catalytic activity are still not clear enough. Here, high-performance hollow TS-1 zeolites with nano-sized crystals and nano-sized cavities were synthesized via post-treatment of direct-synthesis nano-sized TS-1 zeolites. The influencing factors of the fabricating processes on their catalytic activities were investigated in detail, including the content of alkali metal ions, the state of titanium centers, hydrophilic/hydrophobic properties, and accessibility of micropores. The post-treatment processes could effectively solve these adverse effects to improve catalytic activity and to stabilize production. These findings contribute to the stable preparation of high-performance TS-1 catalysts in both factories and laboratories.
RESUMO
Bio-based packaging materials and efficient drug delivery systems have garnered attention in recent years. Among the soluble cellulose derivatives, carboxymethyl cellulose (CMC) stands out as a promising candidate due to its biocompatibility, biodegradability, and wide resources. However, CMC-based films have limited mechanical properties, which hinders their widespread application. This paper aims to address this issue by exploring the molecular interactions between CMC and various additives with different molecular structures, using the rheological method. The additives include O-carboxymethylated chitosan (O-CMCh), N-2-hydroxypropyl-3-trimethylammonium-O-carboxymethyl chitosan (HTCMCh), hydroxypropyltrimethyl ammonium chloride chitosan (HACC), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). By investigating the rheological properties of film-forming solutions, we aimed to elucidate the influencing mechanisms of the additives on CMC-based films at the molecular level. Various factors affecting rheological properties, such as molecular structure, additive concentration, and temperature, were examined. The results revealed that the interactions between CMC and the additives were dependent on the charge of the additives. Electrostatic interactions were observed for HACC and HTCMCh, while O-CMCh, CNC, and CNF primarily interacted through hydrogen bonds. Based on these rheological properties, several systems were selected to prepare the films, which exhibited excellent transparency, wettability, mechanical properties, biodegradability, and absence of cytotoxicity. The desirable characteristics of these selected films demonstrated the strong biocompatibility between CMC and chitosan and cellulose derivatives. This study offers insights into the preparation of CMC-based food packaging materials with specific properties.
Assuntos
Quitosana , Quitosana/química , Celulose/química , Carboximetilcelulose Sódica/química , SódioRESUMO
The equilibrium conditions of sII methane/propane hydrates have been experimentally determined for the C3H8/CH4-H2O-urea system. The equilibrium dissociation temperatures and pressures of sII hydrates span a wide P,T-range (266.7-293.9 K; 0.87-9.49 MPa) and were measured by varying the feed mass fraction of urea in solution from 0 to 50 mass%. The experimental points at feed urea concentration ≤ 40 mass% correspond to the V-Lw-H equilibrium (gas-aqueous urea solution-gas hydrate). A four-phase V-Lw-H-Su equilibrium (with an additional phase of solid urea) was observed because the solubility limit of urea in water was reached for all points at a feed mass fraction of 50 mass% and for one point at 40 mass% (266.93 K). Gas hydrate equilibria were measured using a high-pressure rig GHA350 under isochoric conditions with rapid fluid stirring and slow ramp heating of 0.1 K/h. Each measured point represents complete dissociation of the sII hydrate. The phase equilibrium data was compared with the literature reported for the C3H8/CH4-H2O and CH4-H2O-urea systems. A comprehensive analysis of the thermodynamic inhibition effect of urea to sII C3H8/CH4 hydrates on pressure and concentration of the inhibitor was carried out. The phase composition of the samples was analyzed by powder X-ray diffractometry at 173 K.
RESUMO
Uncontrolled bleeding in emergency situations is a great threat to both military and civilian lives, and an ideal hemostat for effectively controlling prehospital hemorrhage is urgently needed but still lacking. Although hemostatic hydrogels are promising for emergency hemostasis, they are currently challenged by either the mutual exclusion between a short gelation time and strong adhesive network or the insufficient functionality of ingredients and complicated operations for in situ curing. Herein, an extracellular matrix biopolymer-based and multifunctional hemostatic hydrogel that simultaneously integrates rapid thermoresponsive gelation, robust wet adhesion, and ease of use in emergencies is rationally engineered. This hydrogel can be conveniently used via simple injection and achieves instant sol-gel phase transition at body temperature. Its comprehensive performance could be facilely regulated by tuning the proportions of components, and the optimal performance (gelation time 6-8 s, adhesion strength 125 ± 3.6 kPa, burst pressure 282 ± 4.1 mmHg) is established due to the coordinated enhancement of the photo-cross-linking pretreatment and the hydrophilic-hydrophobic balance among various interactions in the hydrogel system. Additionally, it exhibits significant coagulation effect in vitro and enables effective hemostasis and wound healing in vivo. This work provides a promising platform for versatile applications of hydrogel-based materials, including emergency hemostasis.
Assuntos
Hemostáticos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Hemostáticos/farmacologia , Biomimética , Hemostasia , Coagulação SanguíneaRESUMO
Ligand shells of gold nanoclusters play important roles in regulating their molecular and electronic structures. However, the similar but distinct impacts of the homologous analogues of the protecting ligands remain elusive. The C2v symmetric monoarsine-protected cluster [Au13(AsPh3)8Cl4]+ (Au13As8) was facilely prepared by direct reduction of (Ph3As)AuCl with NaBH4. This cluster is isostructural with its previously reported stibine analogue [Au13(SbPh3)8Cl4]+ (Au13Sb8), enabling a comparative study between them. Au13As8 exhibits a blue-shifted electronic absorption band, and this is probably related to the stronger π-back donation interactions between the Au13 core and AsPh3 ligands, which destabilize its superatomic 1P and 1D orbitals. In comparison to the thermodynamically less stable Au13Sb8, Au13As8 achieves a better trade-off between catalytic stability and activity, as demonstrated by its excellent catalytic performance towards the aldehyde-alkyne-amine (A3) coupling reaction. Moreover, the ligand exchange reactions between Au13As8 with phosphines, as exemplified by PPh3 and Ph2P(CH2)2PPh2, suggest that Au13As8 may be a good precursor cluster for further cluster preparation through the "cluster-to-cluster" route.
RESUMO
Hydrazine (N2H4) and hypochlorite (ClO-) are extremely harmful to the public health, so it is vitally necessary to detect them in living system. Herein, we developed a new phenthiazine-thiobarbituric acid based dual-analyte responsive fluorescent sensor PT for visually distinguishing and detecting N2H4 and ClO-. PT underwent N2H4/ClO--induced CC breakage, achieving olive-drab/brilliant green fluorescence lighting-up response towards N2H4/ClO- with superb specifity, ultra-sensitivity (detection limit: 15.4 nM for N2H4, 13.7 nM for ClO-), and ultra-fast response (N2H4: <15 s, ClO-: <20 s). The mechanisms for sensing N2H4 and ClO- were investigated with support of spectral measurements and DFT investigation. Sensor based paper-strip/silica-gel device was developed for in-field supervision and on-site monitoring of gaseous and aqueous N2H4 and ClO- solution. In addition, the PT was also applied for quantitatively detecting N2H4 and ClO- in soil, food, plants and bio-fluids. Moreover, PT was utilized to visualize exogenous N2H4 and ClO- in living plants and live-cells, demonstrating this sensor utilized as a powerful tool to detect N2H4 and ClO- in biological fields.
Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Corantes Fluorescentes/farmacologia , Espectrometria de Fluorescência/métodos , Células HeLa , HidrazinasRESUMO
Three-phase equilibrium conditions of vapor-aqueous solution-gas hydrate coexistence for the systems of CH4-H2O-organic thermodynamic inhibitor (THI) were experimentally determined. Hydrate equilibrium measurements for systems with methanol (MeOH), monoethylene glycol (MEG), and diethylene glycol (DEG) were conducted. Five concentrations of each inhibitor (maximum content 50 mass%) were studied in the pressure range of 4.9-8.4 MPa. The equilibrium temperature and pressure in the point of complete dissociation of methane hydrate during constant-rate heating combined with vigorous mixing of fluids (600 rpm) in a high-pressure vessel were determined. We compared our experimental points with reliable literature data. The coefficients of empirical equations are derived, which accurately describe hydrate equilibrium conditions for the studied systems. The effect of THI concentration and pressure on methane hydrate equilibrium temperature suppression was analyzed. In the second stage, we studied the kinetics of methane hydrate nucleation/growth in systems containing a polymeric KHI (0.5 mass% of N-vinylpyrrolidone and N-vinylcaprolactam copolymer) in water or THI aqueous solution. For this, temperatures, pressures, and subcoolings of methane hydrate onset were measured by rocking cell tests (RCS6 rig, ramp cooling at 1 K/h). Gas uptake curves characterizing the methane hydrate crystallization kinetics in the polythermal regime were obtained.
RESUMO
A new ICT type D-π-A structured chemosensor DTB derived from a bithiophene-benzothiazole derivative has been synthesized. Sensor DTB showed a colorimetric and fluorometric dual-signaling response to hypochlorite (ClO-) in EtOH/HEPES solution (1/99, V/V, pH = 7.4, nearly 100% aqueous solution). Sensor DTB exhibited well specificity, high sensitivity and rapidity (<1 min) for ClO- with a detection limit of 25 nM. Sensor DTB features remarkable color changes and significant fluorescence "turn-on" response (ca. 45 fold) after treating with ClO-. Comprehensive analyses by 1H NMR, TLC, FTIR, HRMS, UV-vis, fluorescence and DFT illustrated that ClO- reacted with the CC bond of DTB, generating fluorophore 2T-CHO, leading to strong blue fluorescence. Interestingly, DTB loaded colorimetric test strips were established for rapid and real-time visual detection of ClO-. Furthermore, the DTB was successfully applied to quantitatively and sensitively detect ClO- in 84 disinfectant, bio-fluids (human serum and urine) and actual water samples. Importantly, the biocompatible DTB has been employed for visualizing and bioimaging ClO- in mung bean sprouts, Arabidopsis, live cells and zebrafish. These investigations demonstrate that DTB has great potentials for detecting ClO- in various biosystems and environments. This work would offer a new idea for developing multifunctional sensors with better performance for chemo/biosensors.
Assuntos
Arabidopsis , Ácido Hipocloroso , Humanos , Animais , Peixe-Zebra , Células Vegetais , Corantes Fluorescentes , ÁguaRESUMO
Glass transition temperature (T g) always deteriorates while improving the strength of epoxy resins which inherently suffer from brittleness. Herein, novel linear polyhedral oligomeric silsesquioxane (POSS)-epoxy nano-modifiers are synthesized with variable contents of POSS. The thermomechanical properties and chemical structure study of the POSS-epoxy indicates significant differences of the rigid POSS content in the linear nano-modifiers. By taking advantage of the synergistic effect of nanofillers and linear polymers, the modifiers disperse at the molecular level when POSS-epoxy is utilized as a co-curing agent for epoxy resins, allowing the applied force to be transferred into the polymer matrix. A good balance of T g, stiffness, and fracture toughness can be obtained. At 5 wt% of the nano-modifier, the resultant epoxy resins showed 27% enhancement in the Young's modulus relative to the neat epoxy. In addition, the T g and strength of epoxy thermosets are improved due to the increased cross-linking density, rough surface and tortuous path that resulted in good dispersion of energy during crack propagation.
RESUMO
The composition of protection monolayer exerts great influence on the molecular and electronic structures of atomically precise monolayer protected metal nanoclusters. Four isostructural Ag/cyanurate/phosphine metallamacrocyclic monolayer protected Ag22 nanoclusters are synthesized by kinetically controlled in-situ ligand formation-driven strategy. These eight-electron superatomic silver nanoclusters feature an unprecedented interfacial bonding structure with diverse E-Ag (E=O/N/P/Ag) interactions between the Ag13 core and metallamacrocyclic monolayer, and displays thermally activated delayed fluorescence (TADF), benefiting from their distinct donor-acceptor type electronic structures. This work not only unmasks a new core-shell interface involving cyanurate ligand but also underlines the significance of high-electron-affinity N-heterocyclic ligand in synthesizing TADF metal nanoclusters. This is the first mixed valence Ag0/I nanocluster with TADF characteristic.
RESUMO
Ti3C2Tx MXene has attracted considerable interest as a new emerging two-dimensional material for environmental remediation due to its high adsorption capacity. However, its use is greatly limited by its poor mechanical properties, low processability and recyclability, and the low dispersity of such powder materials. In this work, a porous adsorbent (C-CMP) containing cellulose nanocrystals (CNC), Ti3C2Tx MXene and polyvinyl alcohol (PVA) was prepared by a simple and environmentally-friendly foaming method. Glutaraldehyde was used as crosslinker to improve the mechanical properties and boost the adsorption efficiency of methylene blue (MB) molecules. Fourier transform infrared (FT-IR), elemental analysis (EDX) and thermogravimetric analysis (TGA) further confirmed that the preparation of the C-CMP foam and cross-linking reaction were successful. Scanning electron microscope (SEM) indicated that the macropores were distributed homogeneously. The adsorption experiment showed that maximum adsorption capacity of MB can reach 239.92 mg·g-1 which was much higher than anionic dye (methyl orange, 45.25 mg·g-1). The adsorption behavior fitted well with the Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. Based on FT-IR, EDX and X-ray photoelectron spectroscopy (XPS) analysis, the adsorption mechanism between C-CMP and MB molecules was attributed to electrostatic interaction.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose , Monofosfato de Citidina , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Purificação da Água/métodosRESUMO
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak-Berggren autocatalytic model.
Assuntos
Nanocompostos , Nanopartículas , Elastômeros , Resinas Epóxi/química , Cinética , Nanocompostos/químicaRESUMO
The metabolic process of the human body produces a large number of gaseous biomarkers. The tracking and monitoring of certain diseases can be achieved through the detection of these markers. Due to the superior specific surface area, large functional groups, good optical transparency, conductivity and interlayer spacing, graphene, and its derivatives are widely used in gas sensing. Herein, the development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the detection principle and the latest detection methods and applications in several common gases, etc. Finally, we summarized the commonly used materials, preparation methods, response mechanisms for NO, NH3, H2S, and volatile organic gas VOCs, and other gas detection, and proposed the challenges and prospective applications in this field.
Assuntos
Grafite , Compostos Orgânicos Voláteis , Amônia/análise , Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Humanos , Óxido Nítrico/análise , Ácidos Sulfúricos/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Imaging-guided chemo-phototherapy based on a single nanoplatform has a great significance to improve the efficiency of cancer therapy and diagnosis. However, high drug content, no burst release and real-time tracking of nanodrugs are the three main challenges for this kind of multifunctional nanotheranostics. In this work, we developed an innovative theranostic nanoplatform based on a Pt(IV) prodrug and a near-infrared (NIR) photosensitizer. A Pt(IV) prodrug and a cyanine dye (HOCyOH, Cy) were copolymerized and incorporated into the main chain of a polyprodrug (PCPP), which self-assembled into nanoparticles (NPs) with â¼27.61% Cy loading and â¼9.37% Pt loading, respectively. PCPP NPs enabled reduction-triggered backbone cleavage of polyprodrugs and bioactive Pt(II) release; Cy could be activated under 808 nm laser irradiation to produce local hyperthermia and reactive oxygen species (ROS) for phototherapy. Moreover, PCPP NPs with extremely high Cy and Pt heavy metal contents in the backbone of the polyprodrug could directly track the nanodrugs themselves via near-infrared fluorescence (NIRF) imaging, photothermal imaging, and computed tomography (CT) imaging in vitro and in vivo. As revealed by trimodal imaging, PCPP NPs were found to exhibit excellent tumor accumulation and antitumor efficiency after intravenous injection into H22-tumor-bearing mice. The dual-drug backboned polyprodrug nanoplatform exhibited great potential for bioimaging and combined chemo-phototherapy.
Assuntos
Neoplasias , Pró-Fármacos , Animais , Corantes/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Platina/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêuticoRESUMO
Gold modified thiol graphene (Au@HS-rGO) was prepared and applied as sensing platform for constructing the electrochemical aptasensor. While gold-palladium modified zirconium metal-organic frameworks (AuPd@UiO-67) nanozyme was employed as signal enhancer for detecting mercury ions (Hg2+) sensitively. Herein, gold nanoparticles (Au NPs) were modified on HS-rGO to form the thin Au@HS-rGO layer. Then the substrate strand (Apt1) was modified on the platform through Au-S bond. The signal strand (Apt2) was further decorated on the platform in the presence of Hg2+. Herein, the Apt2 was labeled with AuPd@UiO-67 nanozyme, which exhibited catalase-like properties to catalyze H2O2, thereby generating the electrical signal. With the concentration of Hg2+ increased, the amount of modified Apt2-AuPd@UiO-67 increased, leading to the rise of current response. Since the current responses were linear with concentration of Hg2+, the detection of Hg2+ can be achieved. Under the optimum conditions, the prepared electrochemical aptasensor exhibited wide linear range from 1.0 nmol/L to 1.0 mmol/L, along with a low detection limit of 0.16 nmol/L. Moreover, the electrochemical aptasensor showed excellent selectivity, reproducibility and stability, together with superior performance in actual water sample analysis. Therefore, this proposed electrochemical aptasensor may have promising applications and provide references for environmental monitoring and management.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Mercúrio , Nanopartículas Metálicas , Estruturas Metalorgânicas , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Paládio , Reprodutibilidade dos Testes , Compostos de Sulfidrila , ZircônioRESUMO
Chitosan/PVA hydrogel films crosslinked by the freeze-thaw method and containing honey and allantoin were prepared for application as wound dressing materials. The effects of the freeze-thaw process and the addition of honey and allantoin on the swelling, the gel content and the mechanical properties of the samples were evaluated. The physicochemical properties of the samples, with and without the freeze-thaw process, were compared using FTIR, DSC and XRD. The results showed that the freeze-thaw process can increase the crystallinity and thermal stability of chitosan/PVA films. The freeze-thaw process increased the gel content but did not have a significant effect on the tensile strength. The presence of honey reduced the swelling and the tensile strength of the hydrogels due to hydrogen bonding interactions with PVA and chitosan chains. Long-term cell culture experiments using normal human dermal fibroblast (NHDF) cells showed that the hydrogels maintained their biocompatibility, and the cells showed extended morphology on the surface of the hydrogels for more than 30 days. The presence of honey significantly increased the biocompatibility of the hydrogels. The release of allantoin from the hydrogel was studied and, according to the Korsmeyer-Peppas and Weibull models, the mechanism was mainly diffusional. The results for the antimicrobial activity against E. coli and S. aureus bacteria showed that the allantoin-containing samples had a more remarkable antibacterial activity against S. aureus. According to the wound healing experiments, 98% of the wound area treated by the chitosan/PVA/honey hydrogel was closed, compared to 89% for the control. The results of this study suggest that the freeze-thaw process is a non-toxic crosslinking method for the preparation of chitosan/PVA hydrogels with long term biocompatibility that can be applied for wound healing and skin tissue engineering.
RESUMO
Electrospinning is a promising method to fabricate bioengineered scaffolds, thanks to utilizing various types of biopolymers, flexible structures, and also the diversity of output properties. Mechanical properties are one of the major components of scaffold design to fabricate an efficacious artificial substitute for the natural extracellular matrix. Additionally, fiber orientations, as one of the scaffold structural parameters, could play a crucial role in the application of fabricated fibrous scaffolds. In this study, gelatin was used as a highly biocompatible polymer in blend with cellulose acetate (CA), a polysaccharide, to enhance the achievable range of mechanical characteristics to fabricated fibrous electrospun scaffolds. By altering input variables, such as polymers concentration, weight ratio, and mandrel rotation speed, scaffolds with various mechanical and morphological properties could be achieved. As expected, the electrospun scaffold with a higher mandrel rotation speed shows higher fiber alignment. A wide range of mechanical properties were gained through different values of polymer ratio and total concentration. A general improvement in mechanical strength was observed by increasing the concentration and CA content in the solution, but contradictory effects, such as high viscosity in more concentrated solutions, influenced the mechanical characteristics as well. A response surface method was applied on experimental results in order to describe a continuous variation of Young's modulus, yield stress, and strain at rupture. A full quadratic version of equations with the 95% confidence level was applied for the response modeling. This model would be an aid for engineers to adjust mandrel rotation speed, solution concentration, and gelatin/CA ratio to achieve desired mechanical and structural properties.