Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Mol Cancer Ther ; 23(5): 700-710, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38237027

RESUMO

There is an unmet clinical need to develop novel strategies to overcome resistance to tyrosine kinase inhibitors (TKI) in patients with oncogene-driven lung adenocarcinoma (LUAD). The objective of this study was to determine whether simvastatin could overcome TKI resistance using the in vitro and in vivo LUAD models. Human LUAD cell lines, tumor cells, and patient-derived xenograft (PDX) models from TKI-resistant LUAD were treated with simvastatin, either alone or in combination with a matched TKI. Tumor growth inhibition was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and expression of molecular targets was assessed by immunoblots. Tumors were assessed by histopathology, IHC stain, immunoblots, and RNA sequencing. We found that simvastatin had a potent antitumor effect in tested LUAD cell lines and PDX tumors, regardless of tumor genotypes. Simvastatin and TKI combination did not have antagonistic cytotoxicity in these LUAD models. In an osimertinib-resistant LUAD PDX model, simvastatin and osimertinib combination resulted in a greater reduction in tumor volume than simvastatin alone (P < 0.001). Immunoblots and IHC stain also confirmed that simvastatin inhibited TKI targets. In addition to inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, RNA sequencing and Western blots identified the proliferation, migration, and invasion-related genes (such as PI3K/Akt/mTOR, YAP/TAZ, focal adhesion, extracellular matrix receptor), proteasome-related genes, and integrin (α3ß1, αvß3) signaling pathways as the significantly downregulated targets in these PDX tumors treated with simvastatin and a TKI. The addition of simvastatin is a safe approach to overcome acquired resistance to TKIs in several oncogene-driven LUAD models, which deserve further investigation.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Sinvastatina , Sinvastatina/farmacologia , Humanos , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Oncogenes , Feminino
2.
Pediatr Rheumatol Online J ; 22(1): 24, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287413

RESUMO

BACKGROUND: Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS: Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS: Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS: Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION: Retrospectively registered.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções Respiratórias , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Anticorpos Anticitoplasma de Neutrófilos , Herpesvirus Humano 4 , Classe I de Fosfatidilinositol 3-Quinases/genética , Fenótipo , Mutação , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/genética
3.
Nat Commun ; 14(1): 5332, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658083

RESUMO

Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia
4.
Front Immunol ; 14: 1206631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638022

RESUMO

Introduction: Immune checkpoint inhibitors (ICIs) only benefit a subset of cancer patients, underlining the need for predictive biomarkers for patient selection. Given the limitations of tumor tissue availability, flow cytometry of peripheral blood mononuclear cells (PBMCs) is considered a noninvasive method for immune monitoring. This study explores the use of spectrum flow cytometry, which allows a more comprehensive analysis of a greater number of markers using fewer immune cells, to identify potential blood immune biomarkers and monitor ICI treatment in non-small-cell lung cancer (NSCLC) patients. Methods: PBMCs were collected from 14 non-small-cell lung cancer (NSCLC) patients before and after ICI treatment and 4 healthy human donors. Using spectrum flow cytometry, 24 immune cell markers were simultaneously monitored using only 1 million PBMCs. The results were also compared with those from clinical flow cytometry and bulk RNA sequencing analysis. Results: Our findings showed that the measurement of CD4+ and CD8+ T cells by spectrum flow cytometry matched well with those by clinical flow cytometry (Pearson R ranging from 0.75 to 0.95) and bulk RNA sequencing analysis (R=0.80, P=1.3 x 10-4). A lower frequency of CD4+ central memory cells before treatment was associated with a longer median progression-free survival (PFS) [Not reached (NR) vs. 5 months; hazard ratio (HR)=8.1, 95% confidence interval (CI) 1.5-42, P=0.01]. A higher frequency of CD4-CD8- double-negative (DN) T cells was associated with a longer PFS (NR vs. 4.45 months; HR=11.1, 95% CI 2.2-55.0, P=0.003). ICIs significantly changed the frequency of cytotoxic CD8+PD1+ T cells, DN T cells, CD16+CD56dim and CD16+CD56- natural killer (NK) cells, and CD14+HLDRhigh and CD11c+HLADR + monocytes. Of these immune cell subtypes, an increase in the frequency of CD16+CD56dim NK cells and CD14+HLADRhigh monocytes after treatment compared to before treatment were associated with a longer PFS (NR vs. 5 months, HR=5.4, 95% CI 1.1-25.7, P=0.03; 7.8 vs. 3.8 months, HR=5.7, 95% CI 169 1.0-31.7, P=0.04), respectively. Conclusion: Our preliminary findings suggest that the use of multicolor spectrum flow cytometry helps identify potential blood immune biomarkers for ICI treatment, which warrants further validation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Leucócitos Mononucleares , Neoplasias Pulmonares/tratamento farmacológico
5.
Front Oncol ; 13: 1199195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465116

RESUMO

Immune checkpoint inhibitors cause rare but potentially fatal neuromuscular complications, leading to a concern to use these agents in cancer patients with pre-existing autoimmune or inflammatory neuromuscular diseases. We report two such patients with paraneoplastic dermatomyositis and "seronegative" paraneoplastic demyelinating neuropathy, respectively, who have been successfully treated with immune checkpoint inhibitor monotherapy as well as maintenance intravenous immunoglobulin. While controlling the paraneoplastic or autoimmune neuromuscular diseases, the use of intravenous immunoglobulin did not compromise the anti-cancer effect of immune checkpoint inhibitor.

6.
BMC Res Notes ; 16(1): 139, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415228

RESUMO

OBJECTIVE: The discovery and characterization of tumor associated antigens is increasingly important to advance the field of immuno-oncology. In this regard, labyrinthin has been implicated as a neoantigen found on the cell surface of adenocarcinomas. Data on the (1) topology, (2) amino acid (a.a.) homology analyses and (3) cell surface localization of labyrinthin by fluorescent activated cell sorter (FACS) are studied in support of labyrinthin as a novel, pan-adenocarcinoma marker. RESULTS: Bioinformatics analyses predict labyrinthin as a type II protein with calcium binding domain(s), N-myristoylation sites, and kinase II phosphorylation sites. Sequence homologies for labyrinthin (255 a.a.) were found vs. the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH; 758 a.a.) and the ASPH-gene related protein junctate (299 a.a.), which are both type II proteins. Labyrinthin was detected by FACS on only non-permeablized A549 human lung adenocarcinoma cells, but not on normal WI-38 human lung fibroblasts nor primary cultures of normal human glandular-related cells. Microscopic images of immunofluorescent labelled MCA 44-3A6 binding to A549 cells at random cell cycle stages complement the FACS results by further showing that labyrinthin persisted on the cell surfaces along with some cell internalization for greater than 20 min.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Biomarcadores , Neoplasias Pulmonares/patologia
7.
Neuropsychologia ; 184: 108547, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967041

RESUMO

The current study investigated how individual variability in working memory (WM) updating affects real-time processing of thematic role assignment and word association during sentence reading comprehension when ERPs were recorded. By adopting a factorial design, four types of sentences were formed by crossing word association and role assignment as independent variables. The results indicated that associated words evoked a smaller N400 effect but a larger P600 effect than unassociated words in the high WM group, whereas no word association effect was found in the low WM group. In contrast, role reversal elicited larger N400 effects for both groups. These results suggest that individual differences in WM updating influenced whether and how readers retrieved and integrated the associated word in whole sentences but did not influence the online assignment of thematic roles during sentence reading. Individuals with high WM updating, in contrast to those with low WM updating, were good at making use of word-associated information provided by the preceding context in current processing.


Assuntos
Potenciais Evocados , Memória de Curto Prazo , Humanos , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia , Semântica , Idioma , Leitura , Compreensão/fisiologia
8.
Plant Physiol ; 192(3): 2030-2048, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930566

RESUMO

Anthocyanin production in bicolored sweet cherry (Prunus avium cv. Rainier) fruit is induced by light exposure, leading to red coloration. The phytohormone abscisic acid (ABA) is essential for this process, but the regulatory relationships that link light and ABA with anthocyanin-associated coloration are currently unclear. In this study, we determined that light treatment of bicolored sweet cherry fruit increased anthocyanin accumulation and induced ABA production and that ABA participates in light-modulated anthocyanin accumulation in bicolored sweet cherry. Two B-box (BBX) genes, PavBBX6/9, were highly induced by light and ABA treatments, as was anthocyanin accumulation. The ectopic expression of PavBBX6 or PavBBX9 in Arabidopsis (Arabidopsis thaliana) increased anthocyanin biosynthesis and ABA accumulation. Overexpressing PavBBX6 or PavBBX9 in sweet cherry calli also enhanced light-induced anthocyanin biosynthesis and ABA accumulation. Additionally, transient overexpression of PavBBX6 or PavBBX9 in sweet cherry peel increased anthocyanin and ABA contents, whereas silencing either gene had the opposite effects. PavBBX6 and PavBBX9 directly bound to the G-box elements in the promoter of UDP glucose-flavonoid-3-O-glycosyltransferase (PavUFGT), a key gene for anthocyanin biosynthesis, and 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1), a key gene for ABA biosynthesis, and enhanced their activities. These results suggest that PavBBX6 and PavBBX9 positively regulate light-induced anthocyanin and ABA biosynthesis by promoting PavUFGT and PavNCED1 expression, respectively. Our study provides insights into the relationship between the light-induced ABA biosynthetic pathway and anthocyanin accumulation in bicolored sweet cherry fruit.


Assuntos
Prunus avium , Prunus avium/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769201

RESUMO

Plant-specific SQUAMOSA promoter-binding protein-like (SPL) transcription factors play important regulatory roles during plant growth and development, fruit ripening, inflorescence branching, and biotic and abiotic stresses. However, there have been no identification or systematic studies of the SPL gene family in the sweet cherry. In this study, 12 SPL genes were identified in the sweet cherry reference genome, which were distributed over 6 chromosomes and classified into six groups according to phylogenetic relationships with other SPL gene families. Nine PavSPLs were highly expressed at green fruit stages and dramatically decreased at the onset of fruit ripening, which implied that they were important regulators during fruit development and ripening. The expression patterns of PavSPL genes under ABA, GA, and MeJA treatments showed that the PavSPLs were involved in the process of fruit ripening. A subcellular localization experiment proved that PavSPL4 and PavSPL7 proteins were localized in the nucleus. The genome-wide identification of the SPL gene family provided new insights while establishing an important foundation for sweet cherry studies.


Assuntos
Prunus avium , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Frutas/metabolismo , Proteínas de Transporte/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica
10.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36765881

RESUMO

To determine Labyrinthin (LAB) expression in non-small-cell lung cancer (NSCLC), we immunostained and scored for LAB immunohistochemistry (IHC) expression on sections of tissue microarrays (TMAs) prepared from 256 archival tissue blocks of NSCLC. Propensity-score-weighted Kaplan-Meier curves and weighted Cox models were used to associate LAB expression with overall survival. LAB mRNA expression was assessed in The Cancer Genome Atlas (TCGA) and correlated with clinical phenotype and outcome. Positive LAB IHC expression (>5% of tumor cells) was detected in 208/256 (81.3%) of NSCLC samples, and found in both lung adenocarcinomas (LUAD) and lung squamous cell cancer (LUSC). LAB positivity was associated with poor overall survival (HR = 3.56, 95% CI: 2.3-5.4; p < 0.0001) and high tumor differentiation grade or metastasis compared with negative LAB expression. Univariant and multivariate survival analyses demonstrated LAB expression as an independent prognostic factor for NSCLC patients. LAB RNA expression in TCGA-LUAD was higher in primary and advanced-stage tumors than in normal tissue, and was associated with poorer overall survival. No significant differences or associations were found with LAB RNA expression in TCGA-LUSC. The LAB IHC assay is being used to identify candidate cancer patients for the first-in-human phase I trial evaluating the LAB vaccines (UCDCC#296, NCT051013560).

11.
Plant Physiol ; 192(3): 1836-1857, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805285

RESUMO

Drought stress substantially reduces the productivity of apple plants and severely restricts the development of apple industry. Malus sieversii, wild apples with excellent drought resistance, is a valuable wild resource for a rootstock improvement of cultivated apple (Malus domestica). miRNAs and their targets play essential roles in plant growth and stress responses, but their roles in drought stress responses in apple are unknown. Here, we demonstrate that microRNA156ab is upregulated in M. sieversii in response to drought stress. Overexpressing msi-miR156ab promoted auxin accumulation, maintained the growth of apple plants, and increased plant resistance to osmotic stress. Antioxidant enzyme activities and proline contents were also increased in miR156ab-OE transgenic apple lines, which improved drought resistance. The squamosa promoter binding protein-like transcription factor MsSPL13 is the target of msi-miR156ab, as demonstrated by 5'-RACE and dual luciferase assays. Heterologous expression of MsSPL13 decreased auxin contents and inhibited growth in Arabidopsis (Arabidopsis thaliana) under normal and stress conditions. The activities of antioxidant enzymes were also suppressed in MsSPL13-OE transgenic Arabidopsis, reducing drought resistance. We showed that MsSPL13 regulates the expression of the auxin-related genes MsYUCCA5, PIN-FORMED7 (MsPIN7), and Gretchen Hagen3-5 (MsGH3-5) by binding to the GTAC cis-elements in their promoters, thereby regulating auxin metabolism. Finally, we demonstrated that the miR156ab-SPL13 module is involved in mediating the difference in auxin metabolism and stress responses between M. sieversii and M26 (M. domestica) rootstocks. Overall, these findings reveal that the miR156ab-SPL13 module enhances drought stress tolerance in apples by regulating auxin metabolism and antioxidant enzyme activities.


Assuntos
Arabidopsis , Malus , Malus/metabolismo , Resistência à Seca , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Secas , Ácidos Indolacéticos/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
12.
Biomark Res ; 11(1): 7, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650586

RESUMO

Over the past decade, targeted therapy for oncogene-driven NSCLC and immune checkpoint inhibitors for non-oncogene-driven NSCLC, respectively, have greatly improved the survival and quality of life for patients with unresectable NSCLC. Increasingly, these biomarker-guided systemic therapies given before or after surgery have been used in patients with early-stage NSCLC. In March 2022, the US FDA granted the approval of neoadjuvant nivolumab and chemotherapy for patients with stage IB-IIIA NSCLC. Several phase II/III trials are evaluating the clinical efficacy of various neoadjuvant immune checkpoint inhibitor combinations for non-oncogene-driven NSCLC and neoadjuvant molecular targeted therapies for oncogene-driven NSCLC, respectively. However, clinical application of precision neoadjuvant treatment requires a paradigm shift in the biomarker testing and multidisciplinary collaboration at the diagnosis of early-stage NSCLC. In this comprehensive review, we summarize the current diagnosis and treatment landscape, recent advances, new challenges in biomarker testing and endpoint selections, practical considerations for a timely multidisciplinary collaboration at diagnosis, and perspectives in emerging neoadjuvant precision systemic therapy for patients with resectable, early-stage NSCLC. These biomarker-guided neoadjuvant therapies hold the promise to improve surgical and pathological outcomes, reduce systemic recurrences, guide postoperative therapy, and improve cure rates in patients with resectable NSCLC.

13.
Exp Hematol Oncol ; 12(1): 10, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647169

RESUMO

Immunotherapy has become the central pillar of cancer therapy. Immune checkpoint inhibitors (ICIs), a major category of tumor immunotherapy, reactivate preexisting anticancer immunity. Initially, ICIs were approved only for advanced and metastatic cancers in the salvage setting after or concurrent with chemotherapy at a response rate of around 20-30% with a few exceptions. With significant progress over the decade, advances in immunotherapy have led to numerous clinical trials investigating ICIs as neoadjuvant and/or adjuvant therapies for resectable solid tumors. The promising results of these trials have led to the United States Food and Drug Administration (FDA) approvals of ICIs as neoadjuvant or adjuvant therapies for non-small cell lung cancer, melanoma, triple-negative breast cancer, and bladder cancer, and the list continues to grow. This therapy represents a paradigm shift in cancer treatment, as many early-stage cancer patients could be cured with the introduction of immunotherapy in the early stages of cancer. Therefore, this topic became one of the main themes at the 2021 China Cancer Immunotherapy Workshop co-organized by the Chinese American Hematologist and Oncologist Network, the China National Medical Products Administration and the Tsinghua University School of Medicine. This review article summarizes the current landscape of ICI-based immunotherapy, emphasizing the new clinical developments of ICIs as curative neoadjuvant and adjuvant therapies for early-stage disease.

14.
Environ Res ; 216(Pt 1): 114512, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208790

RESUMO

Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.


Assuntos
DNA Ambiental , Rios , Animais , Rios/química , Ecossistema , Código de Barras de DNA Taxonômico , Filogenia , Monitoramento Ambiental , Biodiversidade , Plantas , Nitrogênio , China
15.
JTO Clin Res Rep ; 3(12): 100436, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545322

RESUMO

Introduction: In patients with NSCLC harboring oncogenic ALK or ROS1 rearrangements, tyrosine kinase inhibitors have yielded high response rates and improvements in progression-free survival compared with cytotoxic chemotherapy; however, acquired resistance eventually develops. In preclinical models, ALK and MEK coinhibition was able to overcome ALK inhibitor resistance. Methods: A phase 1 study of the ALK/ROS1 inhibitor ceritinib and the MEK inhibitor trametinib in patients with refractory NSCLC harboring ALK or ROS1 fusions was initiated. A three plus three dose-escalation scheme was used. Two dose levels were investigated. The primary end point was to determine the safety and tolerability of the combination. Results: Nine patients (n = 8 ALK+, n = 1 ROS1+) were enrolled in the study and completed at least one cycle of therapy. The most common adverse events (all grades) were diarrhea (n = 9; 100%), rash (n = 8; 89%), abdominal pain (n = 5; 56%), and elevated aspartate transaminase/alanine transaminase level (n = 4; 44%). The overall response rate was 22%, whereas disease control rate was 56%. Median duration of response was 7.85 months. The median progression-free survival was 3.0 months (95% confidence interval: 1.5-7.0 mo). The median overall survival was 8.9 months (95% confidence interval: 2.0-not reached). Conclusions: Data from this trial indicate that the combination of ceritinib and trametinib had no unexpected toxicities and that a tolerable dose could be identified. A subset of patients seemed to obtain clinical benefit from this treatment after progression on prior ALK/ROS1 inhibitor treatment.ClinicalTrials.gov Identifier: NCT03087448.

16.
Hortic Res ; 9: uhac192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338839

RESUMO

Under drought stress, reactive oxygen species (ROS) overaccumulate as a secondary stress that impairs plant performance and thus severely reduces crop yields. The mitigation of ROS levels under drought stress is therefore crucial for drought tolerance. MicroRNAs (miRNAs) are critical regulators of plant development and stress responses. However, the complex molecular regulatory mechanism by which they function during drought stress, especially in drought-triggered ROS scavenging, is not fully understood. Here, we report a newly identified drought-responsive miRNA, miR164g, in the wild apple species Malus sieversii and elucidate its role in apple drought tolerance. Our results showed that expression of miR164g is significantly inhibited under drought stress and it can specifically cleave transcripts of the transcription factor MsNAC022 in M. sieversii. The heterologous accumulation of miR164g in Arabidopsis thaliana results in enhanced sensitivity to drought stress, while overexpression of MsNAC022 in Arabidopsis and the cultivated apple line 'GL-3' (Malus domestica Borkh.) lead to enhanced tolerance to drought stress by raising the ROS scavenging enzymes activity and related genes expression levels, particularly PEROXIDASE (MsPOD). Furthermore, we showed that expression of MsPOD is activated by MsNAC022 in transient assays. Interestingly, Part1 (P1) region is the key region for the positive regulation of MsPOD promoter by MsNAC022, and the different POD expression patterns in M. sieversii and M. domestica is attributed to the specific fragments inserted in P1 region of M. sieversii. Our findings reveal the function of the miR164g-MsNAC022 module in mediating the drought response of M. sieversii and lay a foundation for breeding drought-tolerant apple cultivars.

17.
Ther Adv Respir Dis ; 16: 17534666221135324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346075

RESUMO

BACKGROUND: Interventional pulmonologists (IPs) are often the first specialist to see patients with suspected metastatic non-small cell lung cancer (mNSCLC). Consequently, they are potentially ideally positioned to expedite the identification of actionable molecular mutations by ordering blood-based cell-free DNA (cfDNA), prior to or upon tissue diagnosis of mNSCLC. METHODS: Retrospective review of cfDNA ordered by IP as part of a routine clinical practice. Patients were categorized into two groups based on when cfDNA was ordered by IP: (1) IP suspected mNSCLC prior to histologic confirmation or (2) IP diagnosed mNSCLC based on histologic confirmation of NSCLC. RESULTS: Twenty patients were identified. Twelve of 13 in group 1 were confirmed to have mNSCLC by oncology and 1 had stage IIIA. Seven of 7 in group 2 were confirmed to have mNSCLC by oncology. Fifteen of 20 also had next-generation tissue molecular testing. Thirteen of 20 (65%) had targetable alterations. Seven of 13 (54%) were identified on cfDNA and tissue, 5/13 (38%) on cfDNA only, and 1/13 (8%) on tissue alone. Tissue results were available a medium of 24 days after, and cfDNA results a medium of 4 days prior to, the patients' first oncology visit. CONCLUSIONS: IP appears to be able identify patients who have mNSCLC and for whom testing for molecular mutations is appropriate even prior to tissue confirmation of NSCLC. A strategy whereby IP employ blood-based cfDNA testing in suspected and tissue confirmed mNSCLC could potentially provide medical oncologists with more timely information on actionable mutations than tissue-based testing first, potentially expediting patient treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Pneumologia , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Ácidos Nucleicos Livres/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação
18.
Microb Pathog ; 173(Pt A): 105837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257566

RESUMO

Gamma-proteobacteria is a class of gram-negative opportunistic pathogens existing in the intestinal flora, often leading to diarrhea and intestinal infectious diseases, and plays an important role in maintaining intestinal homeostasis. Type III secretion system (T3SS), an important virulence system, is closely related to the adhesion and invasion and pathogenicity to host cells. Therefore, anti-virulence agents targeting T3SS are important strategies for controlling pathogenic infections. In this study, the anti-Salmonella T3SS active compounds neochebulagic acid (1), ellagic acid (2) and urolithin M5 (3) were isolated from seed extract of Terminalia citrina by activity-guided isolation method. Based on the fact that urolithins are the main and stable intestinal microbiota metabolites of hydrolysable tannins, we found that the metabolite urolithin B repressed translation and secretion of SipC through the Hha-H-NS-HilD-HilC-RtsA-HilA regulatory pathway. The results provide evidence for Terminalia seeds and ellagitannin-rich berries and nuts in regulating intestinal homeostasis and treating bacterial infection.


Assuntos
Terminalia , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/genética
19.
Front Oncol ; 12: 980181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185315

RESUMO

Background: Immune checkpoint inhibitor (ICI) therapy has improved survivals with a favorable toxicity profile in a variety of cancer patients. We hypothesized that hospitalized cancer patients who have acute or chronic comorbidities may have suppressed immune systems and poor clinical outcomes to ICIs. The objective of this study was to explore clinical outcomes and predictive factors of hospitalized cancer patients who received ICI therapy at an NCI-designated Comprehensive Cancer Center. Methods: A retrospective review of electronic medical records was conducted for adult cancer patients who received an FDA-approved ICI during admission from 08/2016 to 01/2022. For each patient we extracted demographics, cancer histology, comorbidities, reasons for hospitalization, ICI administered, time from treatment to discharge, time from treatment to progression or death, and complete blood counts. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method and compared using the log-rank test. The 95% confidence interval for survival was calculated using the exact binomial distribution. Statistical significance was defined as 2-sided p<0.05. Results: Of 37 patients identified, 2 were excluded due to lack of complete blood counts on admission. Average hospital stay was 24.2 (95% CI 16.5, 31.9) days. Ten (27.0%) patients died during the same hospitalization as treatment. Of those who followed up, 22 (59.5%) died within 90 days of inpatient therapy. The median PFS was 0.86 (95% CI 0.43, 1.74) months and median OS was 1.55 (95% CI 0.76, 3.72) months. Patients with ≥3 comorbidities had poorer PFS (2.4 vs. 0.4 months; p=0.0029) and OS (5.5 vs. 0.6 months; p=0.0006). Pre-treatment absolute lymphocyte counts (ALC) <600 cells/µL were associated with poor PFS (0.33 vs. 1.35 months; p=0.0053) and poor OS (0.33 vs. 2.34 months; p=0.0236). Pre-treatment derived neutrophil to lymphocyte ratio (dNLR) <4 was associated with good median PFS (1.6 vs. 0.4 months; p=0.0157) and OS (2.8 vs. 0.9 months; p=0.0375). Conclusions: Administration of ICI therapy was associated with poor clinical outcomes and high rates of both inpatient mortality and 90-day mortality after inpatient ICI therapy. The presence of ≥3 comorbidities, ALC <600/µL, or dNLR >4 in hospitalized patients was associated with poor survival outcomes.

20.
Plant Physiol ; 190(4): 2501-2518, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36130298

RESUMO

Softening is a key step during fruit ripening that is modulated by the interplay between multiple phytohormones. The antagonistic action of abscisic acid (ABA) and auxin determines the rate of fruit ripening and softening. However, the transcription factors that integrate ABA and auxin signals to regulate fruit softening remain to be determined. In this study, we identified several DNA-binding with One Finger (Dof) transcription factors essential for ABA-promoted fruit softening, based on transcriptome analysis of two sweet cherry (Prunus avium L.) varieties with different fruit firmness. We show that PavDof6 directly binds to the promoters of genes encoding cell wall-modifying enzymes to activate their transcription, while PavDof2/15 directly repress their transcription. Transient overexpression of PavDof6 and PavDof2/15 in sweet cherry fruits resulted in precocious and delayed softening, respectively. In addition, we show that the auxin response factor PavARF8, the expression of whose encoding gene is repressed by ABA, activates PavDof2/15 transcription. Furthermore, PavDof2/6/15 and PavARF8 directly bind to the 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1) promoter and regulate its expression, forming a feedback mechanism for ABA-mediated fruit softening. These findings unveil the physiological framework of fruit softening and establish a direct functional link between the ABA-PavARF8-PavDofs module and cell-wall-modifying genes in mediating fruit softening.


Assuntos
Ácido Abscísico , Prunus avium , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Prunus avium/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA