RESUMO
Precious metals such as palladium (Pd) have many applications, ranging from automotive catalysts to fine chemistry. Platinum group metals are, thus, in massive demand for industrial applications, even though they are relatively rare and belong to the list of critical materials for many countries. The result is an explosion of their price. The recovery of Pd from spent catalysts and, more generally, the development of a circular economy process around Pd, becomes essential for both economic and environmental reasons. To this aim, we propose a sustainable process based on the use of supercritical CO2 (i.e., a green solvent) operated in mild conditions of pressure and temperature (p = 25 MPa, T = 313 K). Note that the range of CO2 pressures commonly used for extraction is going from 15 to 100 MPa, while temperatures typically vary from 308 to 423 K. A pressure of 25 MPa and a temperature of 313 K can, therefore, be viewed as mild conditions. CO2-soluble copolymers bearing complexing groups, such as pyridine, triphenylphosphine, or acetylacetate, were added to the supercritical fluid to extract the Pd from the catalyst. Two supported catalysts were tested: a pristine aluminosilicate-supported catalyst (Cat D) and a spent alumina supported-catalyst (Cat A). An extraction conversion of up to more than 70% was achieved in the presence of the pyridine-containing copolymer. The recovery of the Pd from the polymer was possible after extraction, and the technological and economical assessment of the process was considered.
RESUMO
Biobased monomers and green processes are key to producing sustainable materials. Cardanol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized, e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced polymerization is recognized as a sustainable process, less energy intensive than thermal curing; however, cardanol-based UV-cured polymers have relatively low thermomechanical properties, making them mostly suitable as reactive diluents or in non-structural applications such as coatings. It is therefore convenient to combine them with biobased reinforcements, such as microfibrillated cellulose (MFC), to obtain composites with good mechanical properties. In this work a cardanol-based methacrylate monomer was photopolymerized in the presence of MFC to yield self-standing, flexible, and relatively transparent films with high thermal stability. The polymerization process was completed within few minutes even in the presence of filler, and the cellulosic filler was not affected by the photopolymerization process.
RESUMO
Precious metals, in particular Pd, have a wide range of applications in industry. Due to their scarcity, precious metals have to be recycled, preferably with green and energy-saving recycling processes. In this article, palladium extraction from an aluminosilicate-supported catalyst, containing about 2 wt% (weight%) of Pd (100% PdO), with supercritical CO2 (scCO2) assisted by complexing polymers is described. Two polymers, p(FDA)SH homopolymer and p(FDA-co-DPPS) copolymer (FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate; DPPS: 4-(diphenylphosphino)styrene), were tested with regards to their ability to extract palladium. Both polymers showed relatively low extraction conversions of approximately 18% and 30%, respectively. However, the addition of piperidine as activator for p(FDA-co-DPPS) allowed for an increase in the extraction conversion of up to 60%.
Assuntos
Silicatos de Alumínio/química , Dióxido de Carbono/química , Paládio/química , Piperidinas/química , Polímeros/química , Acrilatos/química , Catálise , Reciclagem/métodos , Estireno/químicaRESUMO
Biobased monomers derived from eugenol were copolymerized by emulsion polymerization to produce latexes for adhesive applications. Stable latexes containing ethoxy dihydroeugenyl methacrylate and ethoxy eugenyl methacrylate with high total solids content of 50 wt % were obtained and characterized. Latexes synthesis was carried out using a semibatch process, and latexes with particle diameters in the range of 159-178 nm were successfully obtained. Glass transition temperature values of the resulting polymers ranged between -32 and -28 °C. Furthermore, tack and peel measurements confirmed the possibility to use these latexes in adhesive applications.
Assuntos
Adesivos , Eugenol , Emulsões , Polimerização , PolímerosRESUMO
Optic nerve-sectioned (ONS) chick eyes are capable of emmetropisation, but these eyes also exhibit increased hyperopia without any visual manipulations, which suggests altered eye growth regulation. These altered growth changes may be related to the loss of retinal ganglion cells that follows nerve lesioning. Colchicine, which also destroys retinal ganglion cells in chicks, was used to further examine the effects of retinal ganglion cell loss on emmetropisation. Growth responses of +10D and -10D lens-wearing colchicine-injected eyes were compared to those of +10D and -10D lens-wearing saline-injected eyes, respectively. Changes after removal of lenses were also analysed. Prior to lens-wear, colchicine-injected eyes exhibited longer optical axial lengths (OL; distance from cornea to retina; p=0.0185) but no differences in refractive error (RE; p=0.6588). Although myopic shifts were not significant for -10D lens-wearing colchicine-injected eyes (p=0.5913), but were for the saline-injected eyes (p=0.0034), these changes were not different (p=0.1646). However, -10D lens-induced OL changes in colchicine-injected eyes showed insignificant (p=0.2214) and reduced (p=0.0102) changes compared to those of saline-injected eyes. +10D lens-treated colchicine-injected eyes showed significant hyperopic shifts (p<0.0001) and significant reductions in OL (p<0.0001) that were similar to those of saline-injected eyes (p=0.7990 and p=0.1495, respectively). Growth responses in eyes recovering from -10D lenses were minimal, with REs unaffected (p=0.3325), but OL reductions affected (p=0.0199) by colchicine. Colchicine-injected eyes recovering from +10D lenses showed significant myopic shifts (p=0.0003) and OL elongations (p<0.0001) that were similar to those of saline-injected eyes (p=0.3999 and p=0.4731, respectively). The results showing that colchicine suppresses the ability to respond to negative lenses but leaves compensation to positive lenses relatively unchanged, are opposite to those of optic nerve sectioned eyes. We speculate that the differences are probably related to the way retinal cells are lost.