Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036134

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent tumor in lung carcinoma cases and threatens human life seriously worldwide. Here we attempt to identify a prognostic biomarker and potential therapeutic target for LUAD patients. METHODS: Differentially expressed genes (DEGs) shared by GSE18842, GSE75037, GSE101929 and GSE19188 profiles were determined and used for protein-protein interaction analysis, enrichment analysis and clinical correlation analysis to search for the core gene, whose expression was further validated in multiple databases and LUAD cells (A549 and PC-9) by quantitative real-time PCR (qRT-PCR) and western blot analyses. Its prognostic value was estimated using the Kaplan-Meier method, meta-analysis and Cox regression analysis based on the Cancer Genome Atlas (TCGA) dataset and co-expression analysis was conducted using the Oncomine database. Gene Set Enrichment Analysis (GSEA) was performed to illuminate the potential functions of the core gene. RESULTS: A total of 115 shared DEGs were found, of which 24 DEGs were identified as candidate hub genes with potential functions associated with cell cycle and FOXM1 transcription factor network. Among these candidates, HMMR was identified as the core gene, which was highly expressed in LUAD as verified by multiple datasets and cell samples. Besides, high HMMR expression was found to independently predict poor survival in patients with LUAD. Co-expression analysis showed that HMMR was closely related to FOXM1 and was mainly involved in cell cycle as suggested by GSEA. CONCLUSION: HMMR might be served as an independent prognostic biomarker for LUAD patients, which needs further validation in subsequent studies.

2.
Sci Total Environ ; 683: 648-658, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150885

RESUMO

Fish consumption is considered to be a major human exposure route for mercury (Hg), but assessing the actual Hg bioavailability from consumed fish is challenging. In this study, we conducted both in vivo bioavailability (using a mouse model) and in vitro bioaccessibility (using various gastrointestinal digestion methods) assessments of Hg from consumed fish. Lyophilized fish muscles which already absorbed Hg through natural incorporation were introduced to mice by active feeding. Assimilation efficiency (AE) was measured as a short-term kinetic parameter, while a 7-day accumulation of Hg in mice blood, liver and kidney was determined. The AEs of Hg in mice ranged between 82 and 96% and showed a positive relationship with MeHg in fish independent of the fish species. For long-term bioavailability tests in which the Hg retention in organs was measured after a 7-day exposure, most Hg was found to be accumulated in liver and kidney, resulting in a strong correlation between Hg dosage and accumulation in mice organs. The long-term absolute bioavailability of mice was comparable between the liver and kidney, but much lower in the blood. The calculated absolute total Hg bioavailability ranged between 38% and 99% and decreased as the Hg dosage increased. Results of bioaccessibility tests varied considerably among different methods, illustrating that there were limitations for the in vitro bioaccessibility assay to predict the digestive dynamics of Hg in mammalian gastrointestinal tract. Our study strongly demonstrated the expediency of direct determination of Hg bioavailability, but more bioaccessibility assessments should be explored and optimized as an alternative to traditional animal experimentation.


Assuntos
Peixes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 651(Pt 2): 1857-1866, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317173

RESUMO

China is now the largest producer of marine farmed fish and there is a considerable concern of seafood safety due to potential mercury contamination. We analyzed both the total mercury (THg) and methylmercury (MeHg) concentrations in nine species of commercial fish from two marine-cage farms in Southern China. 13C and 15N stable isotopes were concurrently analyzed to identify the artificial feed sources and the trophic levels of farmed fish. Mercury concentrations of all species were much lower than the human health screening values and safety limits established by different countries. Mercury levels in artificial pellets were the main determinants of Hg accumulation in fish between two sites, while somatic growth dilution and size also played an important role. Among the different fish tissues, muscle was a major reservoir for Hg and contained the highest ratio of MeHg/THg, and liver was the second important organ for Hg accumulation in most fish species. Intestine was a critical organ for Hg biotransformation with its %MeHg differing greatly among different fish species. δ15N analysis could not be used to determine the trophic levels in culturing systems where artificial practices were involved. Based on the δ13C signatures, five species of fish were identified to solely feed on the artificial pellets, yet the Hg bioaccumulation differed significantly among these species. We therefore concluded that Hg bioaccumulation in different fish species may be dependent on their internal Hg biotransformation as well as their biokinetics.


Assuntos
Ração Animal/análise , Aquicultura/métodos , Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Animais , Isótopos de Carbono/análise , China , Peixes/metabolismo , Isótopos de Nitrogênio/análise , Especificidade da Espécie
4.
Chem Commun (Camb) ; 50(93): 14654-7, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25316372

RESUMO

A novel ZSM-5 membrane with a low Si/Al ratio and homogeneous aluminum spatial distribution was achieved from an organic template-free inorganic gel in the presence of both OH(-) and F(-) ions and the obtained ZSM-5 membrane exhibited excellent selectivity and high flux and stability for dehydration of acetic acid in a wide AcOH content range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA